This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255361 #28 Oct 16 2024 06:57:39 %S A255361 0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,1,0,1,0,1,1,0,0,2,1,0,1,1,0,2,0,1,1,0, %T A255361 1,3,0,0,1,2,0,2,0,1,2,0,0,3,1,1,1,1,0,2,1,2,1,0,0,4,0,0,2,2,1,2,0,1, %U A255361 1,2,0,4,0,0,2,1,1,2,0,3,2,0,0,4,1,0,1,2,0,4,1,1,1,0,1,4,0,1,2,3,0,2,0,2,3,0 %N A255361 Number of ways n can be represented as x*y+x+y where x>=y>1. %H A255361 Antti Karttunen, <a href="/A255361/b255361.txt">Table of n, a(n) for n = 0..3300</a> %F A255361 Let d = A000005; then a(n) = floor((d(n+1) - 1)/2) for even n and a(n) = floor((d(n+1) - 3) / 2) for odd n>1. - _Ivan Neretin_, Sep 07 2015 %e A255361 8 = 2*2 + 2 + 2, this is the only representation, so a(8)=1. %e A255361 23 = 2*7 + 2 + 7 = 3*5 + 3 + 5, two representations, so a(23)=2. %t A255361 a[n_] := (r = Reduce[x >= y > 1 && n == x*y + x + y, {x, y}, Integers]; Which[r[[0]] === And, 1, r[[0]] === Or, Length[r], True, 0]); %t A255361 Table[a[n], {n, 0, 105}] (* _Jean-François Alcover_, Jan 23 2018 *) %o A255361 (Python) %o A255361 TOP = 1000 %o A255361 a = [0]*TOP %o A255361 for y in range(2, TOP//2): %o A255361 for x in range(y, TOP//2): %o A255361 k = x*y + x + y %o A255361 if k>=TOP: break %o A255361 a[k]+=1 %o A255361 print(a) %o A255361 (Python) %o A255361 from sympy import divisor_count %o A255361 def A255361(n): return int((divisor_count(n+1)-1>>1)-(n&1)) if n!=1 else 0 # _Chai Wah Wu_, Oct 15 2024 %o A255361 (PARI) a(n) = {nb = 0; for (y=2, n\2, for (x=y, n\2, nb += ((x*y+x+y) == n););); nb;} \\ _Michel Marcus_, Feb 22 2015 %Y A255361 Cf. A253975, A254636. %K A255361 nonn %O A255361 0,24 %A A255361 _Alex Ratushnyak_, Feb 21 2015 %E A255361 More terms from _Antti Karttunen_, Sep 22 2017