This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255414 #36 Nov 12 2024 11:44:02 %S A255414 7,31,59,85,113,137,163,191,217,241,269,295,323,347,373,401,427,451, %T A255414 479,505,533,557,583,611,637,661,689,715,743,767,793,821,847,871,899, %U A255414 925,953,977,1003,1031,1057,1081,1109,1135,1163,1187,1213,1241,1267,1291,1319,1345,1373,1397,1423,1451,1477,1501,1529,1555,1583,1607,1633,1661 %N A255414 Row 4 of Ludic array A255127. %H A255414 Antti Karttunen, <a href="/A255414/b255414.txt">Table of n, a(n) for n = 1..10001</a> %H A255414 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1). %F A255414 a(n) = A255407(A084968(n)). %F A255414 From _M. F. Hasler_, Nov 09 2024: (Start) %F A255414 a(n) = a(n-8) + 210 = 210*floor((n-1)/8) + a((n-1)%8 + 1), where % is the modulo or remainder operation. %F A255414 a(n) = a(n-1) + a(n-8) - a(n-9) for n > 9, with a(1..9) given in DATA. %F A255414 G.f.: x*(7 + 24*x + 28*x^2 + 26*x^3 + 28*x^4 + 24*x^5 + 26*x^6 + 28*x^7 + 19*x^8)/D with D = 1 - x - x^8 + x^9 = (1 + x^4)(1 - x^4) = (1 + x^4)(1 + x^2)(1 + x)(1 - x). (End) %o A255414 (Scheme) (define (A255414 n) (A255127bi 4 n)) ;; Code for A255127bi given in A255127. %o A255414 (PARI) appy( {A255414(n)=(n--)\8*210+[7, 31, 59, 85, 113, 137, 163, 191][n%8+1]}, [1..30]) \\ _M. F. Hasler_, Nov 09 2024 %Y A255414 Row 4 of A255127. %Y A255414 Cf. A084968, A255407. %K A255414 nonn,easy %O A255414 1,1 %A A255414 _Antti Karttunen_, Feb 22 2015