This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255416 #15 Nov 18 2024 07:36:15 %S A255416 13,73,133,197,263,325,385,449,511,571,641,701,761,823,887,947,1013, %T A255416 1075,1139,1199,1261,1327,1387,1447,1513,1573,1637,1703,1763,1825, %U A255416 1889,1951,2011,2071,2141,2201,2261,2327,2387,2453,2515,2575,2639,2699,2767,2827,2887,2953,3013,3073,3143,3203,3265,3325,3389,3451,3511,3581,3641,3701 %N A255416 Row 6 of Ludic array A255127. %H A255416 Antti Karttunen, <a href="/A255416/b255416.txt">Table of n, a(n) for n = 1..10001</a> %F A255416 a(n) = A255407(A084970(n)). %F A255416 a(n) = a(n-480) + 30030 = 30030*floor((n-1)/480) + a((n-1)%480 + 1), where % is the modulo or remainder operator. - _M. F. Hasler_, Nov 10 2024 and Nov 17 2024 %o A255416 (Scheme) (define (A255416 n) (A255127bi 6 n)) ;; Code for A255127bi given in A255127. %o A255416 (PARI) my(L=[x+2^(x%2)|x<-[1..10^4]*3], m(n,k)=2^(n\/k*k)\(2^k-1)); for(i=3, 5, L=vecextract(L, 2^#L-m(#L, L[1])-1)); L255416=vecextract(L, m(#L, L[1])); %o A255416 A255416(n)=n--\480*30030+L255416[n%480+1] \\ _M. F. Hasler_, Nov 17 2024 %o A255416 (Python) %o A255416 def A255416(n): %o A255416 try: n-=1; return A255416.L[n] %o A255416 except IndexError: return n//480*30030 + A255416.L[n%480] %o A255416 except AttributeError: L = [3*x+5-(x&1) for x in range(10**4)] %o A255416 for k in L[:3]: L = [x for i,x in enumerate(L) if i%k] %o A255416 A255416.L = L[::13]; return n//480*30030 + A255416.L[n%480] %o A255416 # _M. F. Hasler_, Nov 17 2024 %Y A255416 Row 6 of A255127. See A255415 for row 5 and A255417 for row 7. %Y A255416 Cf. A084970, A255407. %K A255416 nonn %O A255416 1,1 %A A255416 _Antti Karttunen_, Feb 22 2015