cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255434 Product_{k=0..n} (k^4+1).

This page as a plain text file.
%I A255434 #22 Nov 01 2022 12:52:51
%S A255434 1,2,34,2788,716516,448539016,581755103752,1397375759212304,
%T A255434 5725048485492809488,37567768161803815860256,
%U A255434 375715249386199962418420256,5501222681512739849730509388352,114078854746529686263861573186255424,3258320249270380899068414253345827420288
%N A255434 Product_{k=0..n} (k^4+1).
%H A255434 Harvey P. Dale, <a href="/A255434/b255434.txt">Table of n, a(n) for n = 0..144</a>
%H A255434 Erhan Gürela, Ali Ulas Özgür Kisisel, <a href="http://dx.doi.org/10.1016/j.jnt.2009.07.014">A note on the products (1^mu + 1)(2^mu + 1)···(n^mu + 1)</a>, Journal of Number Theory, Volume 130, Issue 1, January 2010, Pages 187-191.
%F A255434 a(n) ~ 2 * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)) * n^(4*n+2) / exp(4*n).
%F A255434 a(n) ~ A258870 * (n!)^4. - _Vaclav Kotesovec_, May 16 2022
%t A255434 Table[Product[k^4 + 1, {k, 0, n}], {n, 0, 15}]
%t A255434 FoldList[Times,Range[0,15]^4+1] (* _Harvey P. Dale_, Nov 01 2022 *)
%o A255434 (PARI) a(n) = prod(k=1, n, 1+k^4); \\ _Michel Marcus_, Jan 25 2016
%Y A255434 Cf. A002523, A101686, A255433, A255435, A144663.
%K A255434 nonn,easy
%O A255434 0,2
%A A255434 _Vaclav Kotesovec_, Feb 23 2015