A255504 Decimal expansion of a constant related to A255322.
3, 0, 4, 8, 3, 3, 0, 3, 0, 6, 5, 2, 2, 3, 4, 8, 5, 6, 6, 9, 1, 1, 9, 2, 0, 4, 1, 7, 3, 3, 7, 6, 1, 3, 0, 1, 5, 8, 8, 5, 3, 1, 3, 4, 7, 5, 6, 8, 9, 0, 4, 9, 1, 8, 4, 5, 2, 5, 4, 8, 3, 6, 9, 7, 6, 8, 4, 8, 3, 4, 1, 6, 5, 3, 3, 9, 0, 8, 8, 1, 4, 5, 1, 4, 6, 6, 7, 7, 6, 7, 0, 2, 2, 1, 6, 0, 5, 1, 6, 7, 7, 1, 9, 1, 8
Offset: 1
Examples
3.048330306522348566911920417337613015885313475689049184525483697684834...
Formula
Equals limit n->infinity (Product_{k=0..n} (k^2)!) / (n^((2*n + 1)*(2*n^2 + 2*n + 3)/6) * (2*Pi)^(n/2) / exp(5*n^3/9 + n^2/2 + n)).
Equals sqrt(2*Pi) * exp(Zeta(3)/(2*Pi^2)) * Product_{n>=1} ((n^2)!/stirling(n^2)), where stirling(n^2) = sqrt(2*Pi) * n^(2*n^2+1) / exp(n^2) is the Stirling approximation of (n^2)!. - Vaclav Kotesovec, Apr 20 2016