A255511 Decimal expansion of a constant related to A255358.
4, 1, 1, 3, 7, 4, 0, 5, 5, 2, 0, 1, 5, 3, 3, 8, 1, 2, 3, 0, 5, 2, 4, 5, 3, 3, 4, 0, 0, 9, 0, 3, 6, 8, 1, 3, 6, 3, 9, 5, 7, 6, 3, 8, 1, 5, 1, 9, 4, 7, 7, 1, 5, 8, 9, 6, 5, 8, 1, 4, 0, 4, 6, 3, 0, 8, 9, 2, 2, 4, 5, 4, 0, 6, 0, 1, 1, 4, 8, 1, 3, 0, 0, 8, 7, 7, 9, 8, 9, 6, 1, 4, 7, 9, 4, 3, 0, 0, 4, 4, 8, 2, 9, 6, 8
Offset: 1
Examples
4.113740552015338123052453340090368136395763815194771589658140463089224...
Formula
Equals limit n->infinity (Product_{k=0..n} (k^3)!) / (n^(29/40 + 3*n/2 + 3*n^2/4 + 3*n^3/2 + 3*n^4/4) * (2*Pi)^(n/2) / exp(n*(n+2)*(12 - 6*n + 7*n^2)/16)).
Equals (2*Pi)^(3/4) * exp(-11/240 - 3*Zeta'(-3)) * Product_{n>=1} ((n^3)!/stirling(n^3)), where stirling(n^3) = sqrt(2*Pi) * n^(3*n^3 + 3/2) / exp(n^3) is the Stirling approximation of (n^3)! and Zeta'(-3) = A259068. - Vaclav Kotesovec, Apr 20 2016