This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255520 #11 Apr 14 2019 07:51:06 %S A255520 0,1,8,92,1304,20198,332520,5703724,100847976,1824927697,33634879304, %T A255520 629201396744,11915930584384,228010216559592,4401559021963488, %U A255520 85616787777724400,1676436841812675760,33017479163392717192,653643628799220208104,12999812350464606307796 %N A255520 Number of rooted identity trees with n nodes and 8-colored non-root nodes. %H A255520 Alois P. Heinz, <a href="/A255520/b255520.txt">Table of n, a(n) for n = 0..750</a> %F A255520 a(n) ~ c * d^n / n^(3/2), where d = 21.5622387024302370660187831154056800411286761376313324441779580180359..., c = 0.049440632575743414117260362085656158155861722... . - _Vaclav Kotesovec_, Feb 24 2015 %F A255520 From _Ilya Gutkovskiy_, Apr 14 2019: (Start) %F A255520 G.f. A(x) satisfies: A(x) = x*exp(8*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k). %F A255520 G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(8*a(n)). (End) %p A255520 with(numtheory): %p A255520 a:= proc(n) option remember; `if`(n<2, n, -add(a(n-j)*add( %p A255520 8*a(d)*d*(-1)^(j/d), d=divisors(j)), j=1..n-1)/(n-1)) %p A255520 end: %p A255520 seq(a(n), n=0..30); %Y A255520 Column k=8 of A255517. %K A255520 nonn %O A255520 0,3 %A A255520 _Alois P. Heinz_, Feb 24 2015