This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255523 #13 Feb 02 2023 17:27:44 %S A255523 1,1,5,64,1193,30526,991264,39156244,1824927697,98125181461, %T A255523 5983042467096,408095177801851,30797863537552547,2548357838769171131, %U A255523 229445851718471852031,22334471403618839348901,2337414940442888593612961,261737726746663069945238177 %N A255523 Number of rooted identity trees with n n-colored non-root nodes. %H A255523 Alois P. Heinz, <a href="/A255523/b255523.txt">Table of n, a(n) for n = 0..300</a> %e A255523 a(2) = 5: %e A255523 o o o o o %e A255523 | | | | / \ %e A255523 1 1 2 2 1 2 %e A255523 | | | | %e A255523 1 2 1 2 %p A255523 with(numtheory): %p A255523 A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add( %p A255523 k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1)) %p A255523 end: %p A255523 a:= n-> A(n+1, n): %p A255523 seq(a(n), n=0..25); %t A255523 A[n_, k_] := A[n, k] = If[n < 2, n, Sum[A[n-j, k]*Sum[ %t A255523 k*A[d, k]*d*(-1)^(j/d+1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; %t A255523 a[n_] := A[n+1, n]; %t A255523 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Apr 29 2022, after _Alois P. Heinz_ *) %Y A255523 A diagonal of A255517. %Y A255523 Cf. A242375. %K A255523 nonn %O A255523 0,3 %A A255523 _Alois P. Heinz_, Feb 24 2015