This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255562 #57 Apr 13 2022 01:16:25 %S A255562 3,5,7,3,11,7,37,19,277,331,223,439,7,406507,67,330515394367,967, %T A255562 10576492618777,116041,223724392248491824062507397,3691561, %U A255562 100105207373914057144918297314160710207525630111509317,423951181 %N A255562 A reversed prime Fibonacci sequence: a(n+2) is the smallest odd prime such that a(n) is the smallest odd prime divisor of a(n+1)+a(n+2). %C A255562 The sequence satisfies a(1) = 3, a(2) = 5, and a(n+2) is the smallest odd prime with the following property: a(n) is the smallest odd prime divisor of a(n+1)+a(n+2). It is a provably infinite sequence. It is also the "reverse" of a prime Fibonacci sequence terminating in 5,3. A prime Fibonacci sequence satisfies the following relation: a(n+2) is the smallest odd prime dividing a(n)+a(n+1), unless a(n)+a(n+1) is a power of two, in which case the sequence terminates. Prime Fibonacci sequences provably terminate, but provably can be extended indefinitely to the left. %H A255562 J. F. Alm and T. Herald, <a href="http://arxiv.org/abs/1507.04807">A Note on Prime Fibonacci Sequences</a>, Fibonacci Quarterly 54:1 (2016), pp. 55-58. arXiv:1507.04807 [math.NT], 2015. %o A255562 (Python) %o A255562 import math %o A255562 def sieve(n): %o A255562 r = int(math.floor(math.sqrt(n))) %o A255562 composites = [j for i in range(2,r+1) for j in range(2*i, n, i)] %o A255562 primes = set(range(2,n)).difference(set(composites)) %o A255562 return sorted(primes) %o A255562 Primes = sieve(1000000) %o A255562 Odd_primes = Primes[1:] %o A255562 def find_smallest_odd_div(n): %o A255562 for p in Odd_primes: %o A255562 if n % p == 0: %o A255562 return p %o A255562 def next_term(a,b): %o A255562 for p in Odd_primes: %o A255562 if (p + b) % a == 0: %o A255562 if find_smallest_odd_div(p+b) == a: %o A255562 return p %o A255562 def compute_reversed_seq(a,b): %o A255562 seq = [a,b] %o A255562 while seq[-1] != None: %o A255562 seq.append(next_term(seq[-2],seq[-1])) %o A255562 return seq[:len(seq)-1] %o A255562 print(compute_reversed_seq(3,5)) %o A255562 (Python) %o A255562 from sympy import isprime, factorint %o A255562 from itertools import islice %o A255562 def rem2(n): %o A255562 while n%2 == 0: n //= 2 %o A255562 return n %o A255562 def agen(): %o A255562 b, c = 3, 5 %o A255562 yield 3 %o A255562 while True: %o A255562 yield c %o A255562 k = (c+2)//b + 1 %o A255562 m = b*k %o A255562 while not isprime(m-c) or min(factorint(rem2(k)), default=b+1) < b: %o A255562 m += b %o A255562 k += 1 %o A255562 b, c = c, m-c %o A255562 print(list(islice(agen(), 19))) # _Michael S. Branicky_, Apr 12 2022 %o A255562 (PARI) lista(nn) = {print1(pp=3, ", "); print1(p=5, ", "); for (n=1, nn, forprime(q=3, , s = (p+q)/ 2^(valuation(p+q, 2)); if ((s!=1) && pp == factor(s)[1,1], np = q; break);); print1(np, ", "); pp = p; p = np;);} \\ _Michel Marcus_, Jul 11 2015 %Y A255562 Cf. A214674, A352955 (starting with 11,19). %K A255562 nonn %O A255562 1,1 %A A255562 _Jeremy F. Alm_, Jul 10 2015 %E A255562 a(16)-a(23) from _Giovanni Resta_, Jul 17 2015