This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255585 #16 Jul 07 2022 06:43:43 %S A255585 50,98,108,242,338,375,578,1029,1058,1458,1922,2738,3072,3362,3993, %T A255585 4418,5618,7442,8978,9216,10658,13778,14739,18818,20402,20577,21218, %U A255585 22898,26985,31250,34322,45602,46875,49298,55778,58564,59858,72962,73167,74498,78732 %N A255585 Composite numbers k such that Sum_{i=1..t-1} d(i+1)/d(i) is prime, where d(1), ..., d(t) are the divisors of k in ascending order. %C A255585 Subsequence of A255586. %C A255585 The corresponding primes are 11, 13, 17, 17, 19, 17, 23, 19, 29, 23, 37, 43, 31, 47, 23, 53, 59, 67, 73, 43, 79, 89, 29, 103, 107, 31, 109, 113, 31, 29, 137, ... %H A255585 Amiram Eldar, <a href="/A255585/b255585.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..150 from Harvey P. Dale) %e A255585 98 is in the sequence because the divisors of 98 are {1, 2, 7, 14, 49, 98} and 2/1 + 7/2 + 14/7 + 49/14 + 98/49 = 13 is prime. %t A255585 lst={};Do[s=0;Do[s=s+Divisors[n][[i+1]]/Divisors[n][[i]],{i,1,Length[Divisors[n]]-1}];If[PrimeQ[s]&&!PrimeQ[n],AppendTo[lst,n]],{n,80000}];lst %t A255585 compQ[n_]:=Module[{d=Divisors[n]},CompositeQ[n]&&PrimeQ[Total[ Rest[d]/ Most[d]]]]; Select[Range[80000],compQ] (* _Harvey P. Dale_, Sep 03 2015 *) %Y A255585 Cf. A085085, A085091, A255576, A255586. %K A255585 nonn %O A255585 1,1 %A A255585 _Michel Lagneau_, Feb 27 2015