A255597 Upper bound on the number of different Euler diagrams for n classes.
1, 1, 3, 29, 1667, 3254781, 10650037396483, 113423713055347294030815229, 12864938683278671740537145090971257103576706009186307
Offset: 0
Keywords
Examples
For n=3 (3 different classes) there are 29 possible Euler diagrams that do not reduce to smaller cases. Of these 11 are in fact repetitions and need to be eliminated to perfect the upper bound.
Links
- Mathematics Stack Exchange, How many Euler diagrams with n sets exist?.
- Wikipedia, Euler diagram.
Crossrefs
Programs
-
C
#include
#include #include #define MAXCLU 7 #define MAXZONE 256 long long combi(int n, int k){ if (n n-k?n-k:k; int j=1; for(;j<=k;j++,n--){ if(n%j==0){ ans*=n/j; }else if(ans%j==0){ ans=ans/j*n; } else{ ans=(ans*n)/j; } } return ans; } int main(){ long long a[MAXCLU][MAXZONE]; long long sum[MAXCLU]; int j,k,i; for (j=0;j
Formula
a(n) = Sum_{k>=1} e(n,k), where k is the number of zones, and the elements e(n,k) are defined recursively as: e(0,1) = 1; e(n,k) = Sum_{c=1..k-1} binomial(c,k-c)*e(n-1,c).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A007018(k). - Jason Yuen, Mar 01 2025
Extensions
More terms from Jason Yuen, Mar 01 2025
Comments