This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255616 #9 Dec 31 2017 01:42:23 %S A255616 1,1,1,1,1,1,1,1,2,1,1,2,3,2,1,1,2,4,5,4,1,1,2,5,8,9,5,1,1,2,6,11,16, %T A255616 15,8,1,1,2,7,14,25,32,27,11,1,1,3,8,18,36,55,64,46,16,1,1,3,9,22,49, %U A255616 88,125,128,81,22,1,1,3,10,27,64,129,216,279,256,140,32,1,1,3,11,31,81,181,343,529,625,512,243,45,1 %N A255616 Table read by antidiagonals, T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1. %H A255616 G. C. Greubel, <a href="/A255616/b255616.txt">Table of n, a(n) for the first 100 antidaigonals, flattened</a> %H A255616 Kival Ngaokrajang, <a href="/A255616/a255616.pdf">Example of table T(n,k), n = 0..12, k = 1..10</a> %F A255616 T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1. %e A255616 See table in the links. %t A255616 T[n_, k_] := Floor[Sqrt[k^n]]; Table[T[k, n + 1 - k], {n, 0, 15}, {k, 0, n}] (* _G. C. Greubel_, Dec 30 2017 *) %o A255616 (PARI){for(i=1,20,for(n=0,i-1,a=floor(sqrt((i-n)^n));print1(a,", ")))} %Y A255616 Rows(1..10): A000012, A000196, A000027, A000093, A000290, A155013, A000578, A155014, A000583, A238170. %Y A255616 Columns(1..10): A000012, A017910, A017913, A000079, A017919, A017922, A017925, A017928, A000244, A017934. %Y A255616 Diagonals: A190343, A066642, A075264. %K A255616 nonn,tabl %O A255616 0,9 %A A255616 _Kival Ngaokrajang_, Feb 28 2015 %E A255616 Terms a(81) onward added by _G. C. Greubel_, Dec 30 2017