This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255658 #6 Jul 23 2025 15:09:02 %S A255658 10320,33042,112196,385738,1324872,4542671,15269184,50963540, %T A255658 171784096,583245999,1978627688,6707590534,22709921860,76722468914, %U A255658 259180579024,877068284264,2969801621944,10051964251804,34016225117956 %N A255658 Number of length n+6 0..3 arrays with at most two downsteps in every 6 consecutive neighbor pairs. %C A255658 Column 6 of A255660 %H A255658 R. H. Hardin, <a href="/A255658/b255658.txt">Table of n, a(n) for n = 1..210</a> %F A255658 Empirical: a(n) = 4*a(n-1) -6*a(n-2) +20*a(n-3) -34*a(n-4) +24*a(n-5) +230*a(n-6) -552*a(n-7) +447*a(n-8) -4060*a(n-9) +6908*a(n-10) -2648*a(n-11) -10346*a(n-12) +26292*a(n-13) -21776*a(n-14) +185776*a(n-15) -406128*a(n-16) +326996*a(n-17) -196764*a(n-18) +82488*a(n-19) -13045*a(n-20) -115472*a(n-21) +108636*a(n-22) -29312*a(n-23) +73724*a(n-24) -12420*a(n-25) -41050*a(n-26) +38840*a(n-27) -21680*a(n-28) +3232*a(n-29) -12984*a(n-30) +13080*a(n-31) -4064*a(n-32) +320*a(n-34) +64*a(n-35) %e A255658 Some solutions for n=3 %e A255658 ..0....0....1....3....0....1....3....2....2....2....0....3....0....2....0....0 %e A255658 ..2....1....0....0....3....1....0....3....3....2....0....2....0....0....2....1 %e A255658 ..2....1....2....2....0....0....2....1....3....3....1....3....0....2....3....0 %e A255658 ..3....0....3....2....0....2....3....3....3....2....1....1....0....2....2....0 %e A255658 ..3....1....3....3....1....0....0....3....0....1....1....2....0....0....0....0 %e A255658 ..0....0....1....0....3....0....2....0....2....1....3....2....0....3....0....2 %e A255658 ..3....0....1....0....3....2....2....3....2....2....2....3....2....3....1....3 %e A255658 ..1....2....2....3....3....3....2....3....2....2....0....3....3....2....1....2 %e A255658 ..2....2....1....2....2....2....1....3....0....3....3....2....1....2....1....2 %Y A255658 Cf. A255660 %K A255658 nonn %O A255658 1,1 %A A255658 _R. H. Hardin_, Mar 01 2015