This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255660 #6 Jul 23 2025 15:09:16 %S A255660 16,64,64,255,256,256,968,1016,1024,1024,3340,3692,4048,4096,4096, %T A255660 10320,11752,14192,16128,16384,16384,28722,33042,42653,54560,64257, %U A255660 65536,65536,72920,83752,112196,155144,209412,256012,262144,262144,171106,195020 %N A255660 T(n,k)=Number of length n+k 0..3 arrays with at most two downsteps in every k consecutive neighbor pairs. %C A255660 Table starts %C A255660 ......16.......64......255.......968......3340.....10320.....28722......72920 %C A255660 ......64......256.....1016......3692.....11752.....33042.....83752.....195020 %C A255660 .....256.....1024.....4048.....14192.....42653....112196....265430.....577464 %C A255660 ....1024.....4096....16128.....54560....155144....385738....864924....1788660 %C A255660 ....4096....16384....64257....209412....564600...1324872...2816673....5555336 %C A255660 ...16384....65536...256012....803246...2036844...4542671...9169016...17232696 %C A255660 ...65536...262144..1020000...3083292...7323894..15269184..29577432...53275408 %C A255660 ..262144..1048576..4063872..11835664..26452984..50963540..92530816..161617336 %C A255660 .1048576..4194304.16191231..45429680..95690028.171784096.286454024..471810032 %C A255660 .4194304.16777216.64508912.174365744.345980784.583245999.900260308.1359483102 %H A255660 R. H. Hardin, <a href="/A255660/b255660.txt">Table of n, a(n) for n = 1..9999</a> %F A255660 Empirical for column k: %F A255660 k=1: a(n) = 4*a(n-1) %F A255660 k=2: a(n) = 4*a(n-1) %F A255660 k=3: a(n) = 4*a(n-1) -a(n-4) %F A255660 k=4: [order 12] %F A255660 k=5: [order 24] %F A255660 k=6: [order 35] %F A255660 k=7: [order 48] %F A255660 Empirical for row n: %F A255660 n=1: [polynomial of degree 11] %F A255660 n=2: [polynomial of degree 11] %F A255660 n=3: [polynomial of degree 11] for n>1 %F A255660 n=4: [polynomial of degree 11] for n>2 %F A255660 n=5: [polynomial of degree 11] for n>3 %F A255660 n=6: [polynomial of degree 11] for n>4 %F A255660 n=7: [polynomial of degree 11] for n>5 %e A255660 Some solutions for n=4 k=4 %e A255660 ..3....1....2....2....3....2....0....1....1....2....2....0....1....1....2....3 %e A255660 ..0....1....0....2....0....0....0....3....2....3....2....3....0....2....0....1 %e A255660 ..2....1....2....3....2....1....1....1....0....1....1....1....0....1....0....1 %e A255660 ..0....2....1....3....3....2....2....1....1....3....2....1....2....0....2....0 %e A255660 ..0....1....3....3....0....3....3....1....3....3....0....0....0....0....2....0 %e A255660 ..0....3....0....1....0....0....1....2....1....3....2....3....1....3....1....3 %e A255660 ..0....3....2....2....1....3....2....0....1....3....0....3....0....2....3....2 %e A255660 ..0....2....2....1....1....3....3....2....3....2....1....1....1....3....2....2 %Y A255660 Column 1 is A000302(n+1) %Y A255660 Column 2 is A000302(n+2) %Y A255660 Column 3 is A206450(n+3) %K A255660 nonn,tabl %O A255660 1,1 %A A255660 _R. H. Hardin_, Mar 01 2015