cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255668 Number of perfect digital invariants of order n, i.e., numbers equal to the sum of n-th powers of their digits.

Original entry on oeis.org

1, 10, 2, 6, 5, 8, 3, 7, 5, 6, 3, 10, 2, 3, 3, 2, 4, 6, 2, 6, 3, 4, 2, 7, 5, 10, 2, 9, 2, 9, 2, 6, 3, 5, 3, 6, 3, 5, 5, 7, 2, 2, 4, 9, 6, 9, 5, 7, 2, 3, 2, 4, 2, 3, 6, 4, 5, 4, 2, 4, 4, 4, 3, 7, 3, 6, 3, 4, 3, 3, 4, 3, 4, 5, 3, 4, 5, 5, 3, 3, 2, 3, 2, 4, 3, 8, 3, 5, 2, 7, 3
Offset: 0

Views

Author

M. F. Hasler, Apr 14 2015

Keywords

Comments

Row lengths of the table A252648.
For a number with d digits, the sum of n-th powers cannot exceed d*9^n, but the number is not less than 10^(d-1). Therefore there is only a finite number of possible perfect digital invariants for any n, the largest of which has at most d* digits, where d* = 1+(n*log(9)+log d*)/log(10).

Examples

			a(0)=1 because 1 is the only number equal to the sum of 0th powers of its digits.
a(1)=10 because { 0, 1, ... 9 } are the only numbers equal to the sum of their digits (taken to the power 1).
a(2)=2 because 0 and 1 are the only numbers equal to the sum of the squares of their digits.
a(3)=6 because { 0, 1, 153, 370, 371, 407 } is the set of all numbers equal to the sum of the 3rd powers of their digits, cf. A046197.
For more examples, see the table A252648.
		

Crossrefs

Programs

  • Mathematica
    Reap@ For[n = 0, n < 6, n++, Sow@ Length@ Select[Range[0, 10^(n + 1)], Plus @@ (IntegerDigits[#]^n) == # &]] // Flatten // Rest (* Michael De Vlieger, Apr 14 2015 *)

Formula

a(n) >= 2 for all n > 0, since 0 and 1 are digital invariants for any power n > 0.

Extensions

a(10)-a(90) from Don Knuth, Sep 09 2015