This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255669 #22 May 22 2025 10:21:42 %S A255669 3,7,61,167 %N A255669 Primes p such that p divides the concatenation of the next two primes. %C A255669 No additional terms up to the 5-millionth prime. Is the sequence finite and complete? %C A255669 No additional terms up to the billionth prime. - _Chai Wah Wu_, Mar 10 2015 %C A255669 a(5) > 10^18. If the reasonable assumption nextprime(p) < p + (log p)^2 holds, then a(5) > 10^53. However, the 192-digits prime %C A255669 7046979865771812080536912751677852348993288590604026845637583892... %C A255669 6174496644295302013422818791946308724832214765100671140939597315... %C A255669 4362416107382550335570469798657718120805369127516778523489932887 is in the sequence. - _Giovanni Resta_, May 08 2015 %e A255669 The three primes beginning with 61 are 61, 67, and 71, and 61 evenly divides 6771. %t A255669 divQ[{a_,b_,c_}]:=Divisible[FromDigits[Flatten[IntegerDigits/@{b,c}]],a]; Transpose[Select[Partition[Prime[Range[500]],3,1],divQ]][[1]] %o A255669 (Python) %o A255669 from sympy import nextprime %o A255669 A255669_list, p1, p2, l = [], 2, 3, 10 %o A255669 for n in range(10**8): %o A255669 p3 = nextprime(p2) %o A255669 if p3 >= l: # this test is sufficient by Bertrand-Chebyshev theorem %o A255669 l *= 10 %o A255669 if not ((p2 % p1)*l + p3) % p1: %o A255669 A255669_list.append(p1) %o A255669 p1, p2 = p2, p3 # _Chai Wah Wu_, Mar 09 2015 %K A255669 nonn,base %O A255669 1,1 %A A255669 _Harvey P. Dale_, Mar 01 2015