This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255670 #17 Oct 23 2024 16:32:37 %S A255670 1,3,1,1,5,1,3,1,1,3,1,1,7,1,3,1,1,5,1,3,1,1,3,1,1,5,1,3,1,1,3,1,1,9, %T A255670 1,3,1,1,5,1,3,1,1,3,1,1,7,1,3,1,1,5,1,3,1,1,3,1,1,5,1,3,1,1,3,1,1,7, %U A255670 1,3,1,1,5,1,3,1,1,3,1,1,5,1,3,1,1,3 %N A255670 Number of the column of the Wythoff array (A035513) that contains L(n), where L = A000201, the lower Wythoff sequence. %C A255670 All the terms are odd, and every odd positive integer occurs infinitely many times. %H A255670 Nicholas John Bizzell-Browning, <a href="https://bura.brunel.ac.uk/handle/2438/29960">LIE scales: Composing with scales of linear intervallic expansion</a>, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 39. %F A255670 a(n) = A255671(n) - 1 = A035612(A000201(n)). %F A255670 a(n) = 1 if and only if n = L(j) for some j; otherwise, n = U(k) for some k. %e A255670 Corner of the Wythoff array: %e A255670 1 2 3 5 8 13 %e A255670 4 7 11 18 29 47 %e A255670 6 10 16 26 42 68 %e A255670 9 15 24 39 63 102 %e A255670 L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that %e A255670 this sequence = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...). %t A255670 z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2}; %t A255670 f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z]; %t A255670 g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}] (* A035612 *) %t A255670 Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}] (* A255670 *) %t A255670 Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *) %Y A255670 Cf. A255671, A035612, A000201, A001950. %K A255670 nonn,easy %O A255670 1,2 %A A255670 _Clark Kimberling_, Mar 03 2015