cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255670 Number of the column of the Wythoff array (A035513) that contains L(n), where L = A000201, the lower Wythoff sequence.

This page as a plain text file.
%I A255670 #17 Oct 23 2024 16:32:37
%S A255670 1,3,1,1,5,1,3,1,1,3,1,1,7,1,3,1,1,5,1,3,1,1,3,1,1,5,1,3,1,1,3,1,1,9,
%T A255670 1,3,1,1,5,1,3,1,1,3,1,1,7,1,3,1,1,5,1,3,1,1,3,1,1,5,1,3,1,1,3,1,1,7,
%U A255670 1,3,1,1,5,1,3,1,1,3,1,1,5,1,3,1,1,3
%N A255670 Number of the column of the Wythoff array (A035513) that contains L(n), where L = A000201, the lower Wythoff sequence.
%C A255670 All the terms are odd, and every odd positive integer occurs infinitely many times.
%H A255670 Nicholas John Bizzell-Browning, <a href="https://bura.brunel.ac.uk/handle/2438/29960">LIE scales: Composing with scales of linear intervallic expansion</a>, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 39.
%F A255670 a(n) = A255671(n) - 1 = A035612(A000201(n)).
%F A255670 a(n) = 1 if and only if n = L(j) for some j; otherwise, n = U(k) for some k.
%e A255670 Corner of the Wythoff array:
%e A255670   1   2   3   5   8   13
%e A255670   4   7   11  18  29  47
%e A255670   6   10  16  26  42  68
%e A255670   9   15  24  39  63  102
%e A255670 L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that
%e A255670 this sequence = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...).
%t A255670 z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2};
%t A255670 f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z];
%t A255670 g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}]  (* A035612 *)
%t A255670 Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}]     (* A255670 *)
%t A255670 Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *)
%Y A255670 Cf. A255671, A035612, A000201, A001950.
%K A255670 nonn,easy
%O A255670 1,2
%A A255670 _Clark Kimberling_, Mar 03 2015