A255671 Number of the column of the Wythoff array (A035513) that contains U(n), where U = A001950, the upper Wythoff sequence.
2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 10, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4
Offset: 1
Examples
Corner of the Wythoff array: 1 2 3 5 8 13 4 7 11 18 29 47 6 10 16 26 42 68 9 15 24 39 63 102 L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that A255670 = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...).
Links
- Ad van Loon, The structure of the expansions, See Section 5.
Programs
-
Mathematica
z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2}; f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z]; g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}] (* A035612 *) Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}] (* A255670 *) Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *)
Comments