cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255674 Decimal expansion of a constant related to the Barnes G-function.

Original entry on oeis.org

1, 0, 6, 9, 8, 8, 3, 7, 9, 6, 1, 7, 8, 1, 3, 3, 5, 6, 8, 2, 6, 8, 2, 9, 2, 5, 7, 6, 4, 7, 0, 2, 8, 1, 3, 2, 3, 5, 9, 7, 3, 7, 3, 5, 4, 1, 5, 3, 7, 2, 3, 2, 7, 3, 0, 8, 3, 7, 8, 5, 7, 1, 4, 6, 2, 0, 3, 9, 8, 6, 3, 0, 9, 0, 7, 2, 2, 3, 1, 3, 3, 7, 7, 2, 7, 0, 8, 5, 9, 8, 9, 9, 3, 0, 5, 9, 6, 8, 0, 3, 5, 7, 0, 5, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 10 2015

Keywords

Examples

			1.06988379617813356826829257647028132359737354153723273083785714620398...
		

Crossrefs

Programs

  • Mathematica
    (* The iteration cycle: *) $MaxExtraPrecision = 1000; funs[n_]:=Product[BarnesG[j+1/2] / BarnesG[j], {j, 1, n}] / (Glaisher^(1/2) * n^(n^2/4 - n/8 - 1/24) * (2*Pi)^(n/4 - 3/16) / E^(n*(3*n-1)/8)); Do[Print[N[Sum[(-1)^(m + j)*funs[j*Floor[200/m]]*(j^(m - 1)/(j - 1)!/(m - j)!), {j, 1, m}], 120]], {m, 10, 150, 10}]
    RealDigits[2^(1/8) * Pi^(3/16) * E^(1/24 - 7*Zeta[3]/(32*Pi^2)) / Glaisher, 10, 120][[1]] (* Vaclav Kotesovec, Mar 02 2019 *)

Formula

Equals limit n->infinity (Product_{j = 1..n} BarnesG(j + 1/2) / BarnesG(j)) / (A^(1/2) * n^(n^2/4 - n/8 - 1/24) * (2*Pi)^(n/4 - 3/16) / exp(n*(3*n-1)/8)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant.
Equals limit n->infinity A055746(n) / (2^(n^3/3 + n^2 - n/8 - 71/48) * exp(9*n^2/8 + 5*n/2 - 7/24) * A^(3*n/2 + 4) / (n^(3*n^2/4 + 21*n/8 + 9/4) * Pi^(n^2/4 + 5*n/4 + 27/16))).
From Vaclav Kotesovec, Mar 02 2019: (Start)
Equals 2^(1/8) * Pi^(3/16) * exp(1/24 - 7*Zeta(3)/(32*Pi^2)) / A, where A is the Glaisher-Kinkelin constant A074962.
Equals exp(-1/24 - 7*Zeta(3)/(32*Pi^2) + Zeta'(-1) + log(2)/8 + 3*log(Pi)/16).
(End)