cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255683 Sum of the binary numbers whose digits are cyclic permutations of the binary expansion of n.

This page as a plain text file.
%I A255683 #36 Jul 08 2025 07:49:38
%S A255683 1,3,6,7,14,14,21,15,30,30,45,30,45,45,60,31,62,62,93,62,93,93,124,62,
%T A255683 93,93,124,93,124,124,155,63,126,126,189,126,189,189,252,126,189,189,
%U A255683 252,189,252,252,315,126,189,189,252,189,252,252,315,189,252,252,315
%N A255683 Sum of the binary numbers whose digits are cyclic permutations of the binary expansion of n.
%C A255683 All the primes in the sequence are Mersenne primes (A000668).
%H A255683 Paolo P. Lava, <a href="/A255683/b255683.txt">Table of n, a(n) for n = 1..1000</a>
%F A255683 a(2^n) = Sum_{k=1..n} 2^k = 2^(n+1)-1.
%F A255683 a(5+4*k) = a(6+4*k), for k >= 0.
%F A255683 For n >= 0 and 0 <= i <= 2^n - 1 we conjecture a(2^n + i) = (2^(n+1) - 1)*A063787(i+1). An example is given below. - _Peter Bala_, Mar 02 2015
%F A255683 a(n) = A000120(n)*(A000918(A000523(n) + 1) + 1). - _Alan Michael Gómez Calderón_, Jul 07 2025
%e A255683 6 in base 2 is 110 and all the cyclic permutations of its digits are: 110, 101, 011. In base 10 they are 6, 5, 3 and their sum is 6 + 5 + 3 = 14.
%e A255683 From _Peter Bala_, Mar 02 2015: (Start)
%e A255683 Let b(n) = A063787(n), beginning [1, 2, 2, 3, 2, 3, 3, 4, ...]. Then
%e A255683 [a(1)] = 1*[b(1)]; [a(2), a(3)] = 3*[b(1), b(2)];
%e A255683 [a(4), a(5), a(6), a(7)] = 7*[b(1), b(2), b(3), b(4)];
%e A255683 [a(8), a(9), a(10), a(11), a(12), a(13), a(14), a(15)] = 15*[b(1), b(2), b(3), b(4), b(5), b(6), b(7), b(8)].
%e A255683 It is conjectured that this relationship continues. (End)
%p A255683 with(numtheory): P:=proc(q) local a,b,c,k,n;
%p A255683 for n from 1 to q do a:=convert(n,binary,decimal); b:=n; c:=ilog10(a);
%p A255683 for k from 1 to c do a:=(a mod 10)*10^c+trunc(a/10); b:=b+convert(a,decimal,binary); od;
%p A255683 print(b); od; end: P(1000);
%t A255683 f[n_] := Block[{b = 2, w = IntegerDigits[n, b]}, Apply[Plus, FromDigits[#, b] & /@ (RotateRight[w, #] & /@ Range[Length@ w])]]; Array[f, 60] (* _Michael De Vlieger_, Mar 04 2015 *)
%t A255683 Table[Total[FromDigits[#,2]&/@Table[RotateRight[IntegerDigits[k,2],n],{n,IntegerLength[k,2]}]],{k,60}] (* _Harvey P. Dale_, Jan 03 2018 *)
%Y A255683 Cf. A000120, A000225, A000523, A000668, A000918, A063787.
%K A255683 nonn,base,easy
%O A255683 1,2
%A A255683 _Paolo P. Lava_, Mar 02 2015