This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255704 #23 Sep 05 2018 12:33:34 %S A255704 1,0,1,0,1,1,0,2,1,1,0,4,3,1,1,0,8,7,3,1,1,0,17,18,8,3,1,1,0,36,45,21, %T A255704 8,3,1,1,0,79,116,56,22,8,3,1,1,0,175,298,152,59,22,8,3,1,1,0,395,776, %U A255704 413,163,60,22,8,3,1,1,0,899,2025,1131,450,166,60,22,8,3,1,1 %N A255704 Number T(n,k) of n-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals k; triangle T(n,k), n>=1, 1<=k<=n, read by rows. %H A255704 Alois P. Heinz, <a href="/A255704/b255704.txt">Rows n = 1..141, flattened</a> %F A255704 T(n,1) = A255636(n,1), T(n,k) = A255636(n,k) - A255636(n,k-1) for k>1. %e A255704 : o o o o o o o %e A255704 : /( )\ /|\ / \ / \ | | | %e A255704 : o o o o o o o o o o o o o o %e A255704 : | | | | / \ / \ /|\ / \ | %e A255704 : o o o o o o o o o o o o o o %e A255704 : | | | | / \ %e A255704 : o o o o o o %e A255704 : | %e A255704 : T(6,3) = 7 o %e A255704 Triangle T(n,k) begins: %e A255704 1; %e A255704 0, 1; %e A255704 0, 1, 1; %e A255704 0, 2, 1, 1; %e A255704 0, 4, 3, 1, 1; %e A255704 0, 8, 7, 3, 1, 1; %e A255704 0, 17, 18, 8, 3, 1, 1; %e A255704 0, 36, 45, 21, 8, 3, 1, 1; %e A255704 0, 79, 116, 56, 22, 8, 3, 1, 1; %e A255704 0, 175, 298, 152, 59, 22, 8, 3, 1, 1; %p A255704 with(numtheory): %p A255704 g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)- %p A255704 `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n) %p A255704 end: %p A255704 T:= (n, k)-> g(n-1, k) -`if`(k=1, 0, g(n-1, k-1)): %p A255704 seq(seq(T(n, k), k=1..n), n=1..14); %t A255704 g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[#-1, k] - If[# == k, 1, 0])&] * g[n-j, k], {j, 1, n}]/n]; %t A255704 T[n_, k_] := g[n-1, k] - If[k == 1, 0, g[n-1, k-1]]; %t A255704 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 24 2017, translated from Maple *) %Y A255704 Columns k=1-10 give: A063524, A002955 (for n>1), A318899, A318900, A318901, A318902, A318903, A318904, A318905, A318906. %Y A255704 Row sums give A000081. %Y A255704 T(2*n+1,n+1) gives A255705. %Y A255704 Cf. A255636. %K A255704 nonn,tabl %O A255704 1,8 %A A255704 _Alois P. Heinz_, Mar 02 2015