cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255725 Numbers n = concat(x,y) such that the product x*y | n. Leading zeros in y allowed.

Original entry on oeis.org

11, 12, 15, 24, 36, 101, 102, 104, 105, 110, 120, 125, 150, 208, 240, 306, 315, 360, 735, 1001, 1002, 1004, 1005, 1008, 1010, 1020, 1025, 1040, 1050, 1100, 1125, 1200, 1250, 1352, 1500, 1734, 2016, 2080, 2400, 3006, 3015, 3024, 3060, 3150, 3375, 3600, 6048, 7007
Offset: 1

Views

Author

Paolo P. Lava, Apr 01 2015

Keywords

Comments

There are numbers that present an additional quasi-solution. For instance, consider 26733375: it is in the sequence because 26733375 / (267 * 33375) = 3 but 26733375 / (2673337 * 5) = 2.000000374... is close to being an integer, too.
Other examples:
52116672 / (521 * 16672) = 6 and 52116672 / (5211667 * 2) = 5.000000191...
138911112 / (1389 * 11112) = 9 and 138911112 / (13891111 * 2) = 5.0000000719...
Is there any number that admits two or more different concatenations whose multiplications divide the number itself (no term up to 3*10^9) ?

Examples

			15 = concat(1,5); 1*5 = 5 and 15 / 5 = 3.
36 = concat(3,6); 3*6 = 18 and 36 / 18 = 2.
9072 = concat(9,072); 9*72 = 648 and 9072 / 648 = 14.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,i,n;
    for n from 1 to q do for i from 1 to ilog10(n) do
    a:=trunc(n/10^i);  b:=n-a*10^i;
    if a*b>0 then if type(n/(a*b),integer) then print(n);
    fi; fi; od; od; end: P(10^9);
  • Mathematica
    v[e_]:=Block[{x,y,k}, y+10^e*x /. List@ ToRules@ Reduce[k*x*y ==  x*10^e+y && k>=0 && x>0 && 0 < y < 10^e, {k,x,y}, Integers]]; upto[nd_] := Select[ Union@ Flatten@ Array[v,nd], # < 10^nd &]; upto[10] (* terms < 10^10, Giovanni Resta, May 26 2015 *)

A256518 Consider numbers n = concat(x,y,z) such that the product x*y*z | n. Leading zeros in y and z allowed. Sequence lists numbers that admit different concatenations.

Original entry on oeis.org

2112, 4224, 11110, 13104, 16128, 17136, 21120, 23184, 27216, 32256, 42240, 70224, 76608, 79632, 92736, 100128, 101101, 101808, 110110, 111100, 111375, 127008, 130104, 131040, 161280, 170170, 171360, 200112, 211200, 231840, 272160, 301125, 322560, 391092, 422400
Offset: 1

Views

Author

Paolo P. Lava, Apr 01 2015

Keywords

Comments

If n belongs to the sequence also n*10^k does.
Two concatenations are considered different when one of them is not a permutation of the other. E.g.: (6,2,22,5) and (6,22,2,5) are not different.

Examples

			Only 2 or 3 different concatenations.
Two different concatenations:
92736 = concat(9*2*736) and 92736 / (9*2*736) = 7;
92736 = concat(92*7*36) and 92736 / (92*7*36) = 4.
Three different concatenations:
23184 = concat(2,3,184) and 23184 / (2*3*184) = 21;
23184 = concat(23,1,84) and 23184 / (23*1*84) = 12;
23184 = concat(23,18,4) and 23184 / (23*18*4) = 14.
The six concatenations of 111111 are excluded because they are basically just one: 1*11*111; 1*111*11; 11*1*111; 11*111*1; 111*1*11; 111*11*1 and 111111 / (1*11*111) = 91.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,ab,b,c,i,j,k,m,n,v,w;
    v:=array(1..10,1..3); w:=[];for n from 1 to q do j:=0;
    for i from 1 to ilog10(n) do c:=(n mod 10^i); ab:=trunc(n/10^i);
    for k from 1 to ilog10(ab) do a:=trunc(ab/10^k); b:=ab-a*10^k;
    if a*b*c>0 then if type(n/(a*b*c),integer) then j:=j+1;
    w:=sort([a,b,c]); for m from 1 to 3 do v[j,m]:=w[m]; od;
    for m from 1 to j-1 do if v[m,1]=v[j,1] and v[m,2]=v[j,2] and v[m,3]=v[j,3]
    then j:=j-1; break; fi; od; fi; fi; od; od;
    if j>1 then print(n); fi; od; end: P(10^9);
  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@ n}, lng = Length@ id; t = Times @@@ Union[Sort /@ Partition[ Flatten@ Table[{FromDigits@ Take[id, {1, i}], FromDigits@ Take[id, {i + 1, j}], FromDigits@ Take[id, {j + 1, lng}]}, {i, 1, lng - 2}, {j, i + 1, lng - 1}], 3]]; Count[IntegerQ /@ (n/t), True] > 1]; k = 100; lst = {}; While[k < 1000001, If[fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Apr 09 2015 *)

A257897 Numbers n such that n = concat(a,b) and n | a^b + b^a , with a>0 and b>0.

Original entry on oeis.org

63, 103, 128, 147, 155, 212, 272, 292, 351, 452, 486, 497, 525, 527, 537, 584, 607, 624, 648, 729, 979, 999, 1024, 1296, 1323, 1359, 1533, 1541, 1575, 1809, 1872, 2048, 2050, 2107, 2187, 2448, 2512, 2537, 2564, 2763, 2793, 2886, 3072, 3357, 3927, 4096, 4263, 4284
Offset: 1

Views

Author

Paolo P. Lava, May 12 2015

Keywords

Comments

We can have different solutions for the same number. E.g.: 2048 divides both (20^48 + 48^20) and (204^8 + 8^204). The same occurs for 4096, 4263, 16807, 32768, 96957, 156672, 186624, 252081, 262144, 270729, 352947, 390624 … The first number with 3 different concatenations is 186624 that divides (18^6624 + 6624^18), (186^624 + 624^186) and (1866^24 + 24^1866).

Examples

			6^3 + 3^6 = 945 and 945 / 63 = 15;
10^3 + 3^10 = 60049 and 60049 / 103 = 583;
12^8 + 8^12 = 69149458432 and 69149458432 / 128 = 540230144; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,i,n; for n from 1 to q do
    for i from 1 to ilog10(n) do a:=trunc(n/10^i); b:=n-a*10^i;
    if a>0 and b>0 then if type((a^b+b^a)/n,integer)
    then print(n); break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    tst[n_]:=Catch@Block[{a,b}, Do[a=Floor[n/10^k]; b=Mod[n,10^k]; If[Mod[ PowerMod[a, b, n] + PowerMod[b, a, n], n]==0, Throw@True], {k, IntegerLength[n]-1}]; False]; Select[Range@1000, tst] (* Giovanni Resta, May 12 2015 *)

A258319 Numbers n such that n = concat(a,b) and n = phi(n) + phi(a) + phi(b), with a>0 and b>0, where phi(n) is the Euler totient function of n.

Original entry on oeis.org

25, 177, 1177, 2501, 17105, 21337, 22681, 32581, 217009, 409501, 561601, 577501, 861841, 1025821, 1401841, 1738081, 2836465, 8331361, 10284193, 19971901, 20103001, 27835921, 31949921, 34897501, 100763053, 107314217, 111512701, 121806001, 150658561, 155874001
Offset: 1

Views

Author

Paolo P. Lava, May 26 2015

Keywords

Examples

			25 = concat(2,5); phi(25) + phi(2) + phi(5) = 20 + 1 + 4 = 25;
177 = concat(1,77); phi(177) + phi(1) + phi(77) = 116 + 1 + 60 = 177; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, b, i; global n; for n from 1 to q do
    for i from 1 to ilog10(n) do a:=trunc(n/10^i); b:=n-a*10^i;
    if a>0 and b>0 then if phi(n)+phi(a)+phi(b)=n
    then print(n); break; fi; fi; od; od; end: P(10^9);

Extensions

a(18) inserted by Giovanni Resta, May 27 2015
Showing 1-4 of 4 results.