This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255736 #11 Feb 16 2025 08:33:25 %S A255736 3024,3168,5115,5346,5950,6762,7750,7956,8470,9476,9576,9849,10360, %T A255736 11495,13035,13356,16335,22610,22784,23864,37515,38025,40704,40986, %U A255736 49887,52925,59800,60955,61812,67782,68590,74800,78430,85063,90160,90649,90897,91540 %N A255736 Integers that are Rhonda numbers to base 30. %C A255736 See A099542 for definition of Rhonda numbers and for more links. %H A255736 Reinhard Zumkeller, <a href="/A255736/b255736.txt">Table of n, a(n) for n = 1..1000</a> %H A255736 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RhondaNumber.html">Rhonda Number</a> %e A255736 a(1) = 3024 = 3 * 30^2 + 10 * 30^1 + 24 * 30^0 = 2*2*2*2*3*3*3*7, %e A255736 with 3 * 10 * 24 = 30 * (2+2+2+2+3+3+3+7) = 720; %e A255736 a(10) = 9476 = 10 * 30^2 + 15 * 30^1 + 26 * 30^0 = 2*2*23*103, %e A255736 with 10 * 15 * 26 = 30 * (2+2+23+103) = 3900. %o A255736 (Haskell) %o A255736 a255736 n = a255736_list !! (n-1) %o A255736 a255736_list = filter (rhonda 30) $ iterate z 1 where %o A255736 z x = 1 + if r < 29 then x else 30 * z x' where (x', r) = divMod x 30 %o A255736 -- Function rhonda as in A099542. %Y A255736 Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255732 (base 20), A255731 (base 60), see also A255872. %Y A255736 Cf. A001414, A027746. %Y A255736 Column k=19 of A291925. %K A255736 nonn,base %O A255736 1,1 %A A255736 _Reinhard Zumkeller_, Mar 05 2015