cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255739 Indices of nontrivial zeros of Riemann zeta function whose imaginary part sets a record for the absolute minimal difference from an integer.

This page as a plain text file.
%I A255739 #33 Aug 10 2023 02:22:51
%S A255739 1,2,3,9,51,473,3233,7657,7722,20002,124170,126137,977155
%N A255739 Indices of nontrivial zeros of Riemann zeta function whose imaginary part sets a record for the absolute minimal difference from an integer.
%C A255739 We consider here the imaginary part of 1/2 + iy = z, for which Zeta(z) is a zero.
%C A255739 No more terms below 600000. - _Robert G. Wilson v_, Sep 30 2015
%C A255739 Is there an Im(rho_k) that is also a positive integer? Is there a minimum gap between an Im(rho_k) and a positive integer? At present it is not known whether this sequence is finite or infinite. - _Omar E. Pol_, Oct 13 2015
%C A255739 No more terms below 2001052. - _Amiram Eldar_, Aug 10 2023
%H A255739 Andrew M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/zeta_tables">Tables of zeros of the Riemann zeta function</a>.
%H A255739 Andrew M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/arch/zeta.zero.spacing.pdf">On the distribution of spacings between zeros of the zeta function</a>.
%H A255739 <a href="/index/Z#zeta_function">Index entries for zeta function</a>.
%F A255739 A255742(n) = A002410(a(n)).
%e A255739 -------------------------------------------------------------------
%e A255739                                      Absolute      New
%e A255739 k      Im(rho_k)       A002410(k)   difference   record   n   a(n)
%e A255739 -------------------------------------------------------------------
%e A255739 1    14.134725142    >    14        0.134725142    Yes    1    1
%e A255739 2    21.022039639    >    21        0.022039639    Yes    2    2
%e A255739 3    25.010857580    >    25        0.010857580    Yes    3    3
%e A255739 4    30.424876126    >    30        0.424876126    Not
%e A255739 5    32.935061588    <    33        0.064938412    Not
%e A255739 6    37.586178159    <    38        0.413821841    Not
%e A255739 7    40.918719012    <    41        0.081280988    Not
%e A255739 8    43.327073281    >    43        0.327073281    Not
%e A255739 9    48.005150881    >    48        0.005150881    Yes    4    9
%e A255739 10   49.773832478    <    50        0.226167522    Not
%e A255739 ...
%e A255739 where rho_k is the k-th nontrivial zero of Riemann zeta function.
%e A255739 We computed more digits of Im(rho_k), but in the above table only 9 digits beyond the decimal point appear.
%t A255739 mn = Infinity; k = 1; lst = {}; While[k < 2501, a = N[ Abs[ Im[ ZetaZero[
%t A255739 k]] - Round[ Im[ ZetaZero[ k]] ]], 32]; If[a < mn, AppendTo[lst, k];
%t A255739 Print[k]; mn = a]; k++]; lst (* _Robert G. Wilson v_, Sep 29 2015 *)
%Y A255739 Cf. A002410, A255742.
%K A255739 nonn,hard,more
%O A255739 1,2
%A A255739 _Omar E. Pol_, Mar 17 2015
%E A255739 a(6)-a(10) from _Robert G. Wilson v_, Sep 29 2015
%E A255739 a(11)-a(12) from _Robert G. Wilson v_, Sep 30 2015
%E A255739 a(13) using Odlyzko's tables added by _Amiram Eldar_, Aug 10 2023