cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255740 Square array read by antidiagonals upwards: T(n,1) = 1; for k > 1, T(n,k) = (n-1)*(n-2)^(A000120(k-1)-1) with n >= 1.

This page as a plain text file.
%I A255740 #38 Mar 16 2015 09:42:34
%S A255740 1,1,0,1,1,0,1,2,1,0,1,3,2,0,0,1,4,3,2,1,0,1,5,4,6,2,0,0,1,6,5,12,3,2,
%T A255740 0,0,1,7,6,20,4,6,2,0,0,1,8,7,30,5,12,6,2,1,0,1,9,8,42,6,20,12,12,2,0,
%U A255740 0,1,10,9,56,7,30,20,36,3,2,0,0,1,11,10,72,8,42,30,80,4,6,2,0,0,1,12,11,90,9,56,42,150,5,12,6,2,0,0
%N A255740 Square array read by antidiagonals upwards: T(n,1) = 1; for k > 1, T(n,k) = (n-1)*(n-2)^(A000120(k-1)-1) with n >= 1.
%C A255740 The partial sums of row n give the n-th row of the square array A255741.
%H A255740 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A255740 T(n,1) = 1; for k > 1, T(n,k) = (n-1)*(n-2)^(A000120(k-1)-1) with n >= 1.
%e A255740 The corner of the square array with the first 16 terms of the first 12 rows looks like this:
%e A255740 -------------------------------------------------------------------------
%e A255740 A000007: 1, 0, 0,  0, 0,  0,  0,   0, 0,  0,  0,   0,  0,   0,   0,    0
%e A255740 A255738: 1, 1, 1,  0, 1,  0,  0,   0  1,  0,  0,   0,  0,   0,   0,    0
%e A255740 A040000: 1, 2, 2,  2, 2,  2,  2,   2, 2,  2,  2,   2,  2,   2,   2,    2
%e A255740 A151787: 1, 3, 3,  6, 3,  6,  6,  12, 3,  6,  6,  12,  6,  12,  12,   24
%e A255740 A147582: 1, 4, 4, 12, 4, 12, 12,  36, 4, 12, 12,  36, 12,  36,  36,  108
%e A255740 A151789: 1, 5, 5, 20, 5, 20, 20,  80, 5, 20, 20,  80, 20,  80,  80,  320
%e A255740 A151779: 1, 6, 6, 30, 6, 30, 30, 150, 6, 30, 30, 150, 30, 150, 150,  750
%e A255740 A151791: 1, 7, 7, 42, 7, 42, 42, 252, 7, 42, 42, 252, 42, 252, 252, 1512
%e A255740 A151782: 1, 8, 8, 56, 8, 56, 56, 392, 8, 56, 56, 392, 56, 392, 392, 2744
%e A255740 A255743: 1, 9, 9, 72, 9, 72, 72, 576, 9, 72, 72, 576, 72, 576, 576, 4608
%e A255740 A255744: 1,10,10, 90,10, 90, 90, 810,10, 90, 90, 810, 90, 810, 810, 7290
%e A255740 A255745: 1,11,11,110,11,110,110,1100,11,110,110,1100,110,1100,1100,11000
%e A255740 ...
%o A255740 (PARI) tabl(nn) = {for (n=1, nn, for (k=1, nn, if (k==1, x = 1, x= (n-1)*(n-2)^(hammingweight(k-1)-1)); print1(x, ", ");); print(););} \\ _Michel Marcus_, Mar 15 2015
%Y A255740 Cf. A000120, A255741.
%Y A255740 Rows 1-12: A000007, A255738, A040000, A151787, A147582, A151789, A151779, A151791, A151782, A255743, A255744, A255745.
%Y A255740 Column 1 is A000012.
%Y A255740 Columns 2^k+1, for k >=0: A011477.
%Y A255740 Columns 4, 6, 7, 10, 11, 13...: 0 together with A002378.
%K A255740 nonn,tabl
%O A255740 1,8
%A A255740 _Omar E. Pol_, Mar 05 2015