A255748 Total number of ON states after n generations of cellular automaton based on triangles in a 60-degree wedge (see Comments lines for definition).
1, 3, 4, 8, 11, 13, 14, 22, 29, 35, 40, 44, 47, 49, 50, 66, 81, 95, 108, 120, 131, 141, 150, 158, 165, 171, 176, 180, 183, 185, 186, 218, 249, 279, 308, 336, 363, 389, 414, 438, 461, 483, 504, 524, 543, 561, 578, 594, 609, 623, 636, 648, 659, 669, 678, 686, 693, 699, 704, 708, 711, 713, 714, 778, 841, 903, 964, 1024
Offset: 1
Examples
Illustration of initial terms: ----------------------------------------------------------- n A080079(n) a(n) Diagram ----------------------------------------------------------- . / \ 1 1 1 / T \ 2 2 3 / T T \ 3 1 4 / T \ 4 4 8 / T T T T \ 5 3 11 / T T T \ 6 2 13 / T T \ 7 1 14 / T \ 8 8 22 / T T T T T T T T \ 9 7 29 / T T T T T T T \ 10 6 35 / T T T T T T \ 11 5 40 / T T T T T \ 12 4 44 / T T T T \ 13 3 47 / T T T \ 14 2 49 / T T \ 15 1 50 / T \ ... For n = 15 after 15 generations there are 50 ON cells in the structure, so a(15) = 50.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 37.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Mathematica
Accumulate@ Flatten@ Table[Range[2^n, 1, -1], {n, 0, 6}] (* Michael De Vlieger, Nov 03 2022 *)
Formula
a(n) = A256266(n)/6.
Comments