This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255767 #30 Jun 07 2024 04:46:49 %S A255767 1,4,6,3,12,8,10,25,24,36,6,14,77,14,32,104,40,27,153,90,40,220,150, %T A255767 10,22,297,275,22,72,348,444,60,26,481,676,130,56,616,938,280,60,660, %U A255767 1455,450,15,80,880,1872,832,32,34,1003,2618,1309,85,108,1224,3312,2106,180,38,1349,4465,3078,380,120,1620,5540,4540,720 %N A255767 Triangle read by rows: T(n,k) = sum of all parts of all partitions of n into k distinct parts. %C A255767 Row n has length A003056(n) hence the first element of column k is in row A000217(n). %C A255767 The first element of column k is A000217(k). %C A255767 Column 1 is A038040. %H A255767 Alois P. Heinz, <a href="/A255767/b255767.txt">Rows n = 1..500, flattened</a> %F A255767 T(n,k) = n * A116608(n,k). %e A255767 Triangle begins: %e A255767 1; %e A255767 4; %e A255767 6, 3; %e A255767 12, 8; %e A255767 10, 25; %e A255767 24, 36, 6; %e A255767 14, 77, 14; %e A255767 32, 104, 40; %e A255767 27, 153, 90; %e A255767 40, 220, 150, 10; %e A255767 22, 297, 275, 22; %e A255767 72, 348, 444, 60; %e A255767 26, 481, 676, 130; %e A255767 56, 616, 938, 280; %e A255767 60, 660, 1455, 450, 15; %e A255767 80, 880, 1872, 832, 32; %e A255767 34, 1003, 2618, 1309, 85; %e A255767 108, 1224, 3312, 2106, 180; %e A255767 38, 1349, 4465, 3078, 380; %e A255767 ... %p A255767 A255767 := proc(n,k) %p A255767 n*A116608(n,k) ; %p A255767 end proc: %p A255767 for n from 1 to 20 do %p A255767 for k from 1 to A003056(n) do %p A255767 printf("%d,",A255767(n,k)) ; %p A255767 end do: %p A255767 printf("\n") ; %p A255767 end do: # _R. J. Mathar_, Jul 10 2015 %p A255767 # second Maple program: %p A255767 b:= proc(n, i) option remember; local j; if n=0 then 1 %p A255767 elif i<1 then 0 else []; for j from 0 to n/i do zip((x, y) %p A255767 ->x+y, %, [`if`(j>0, 0, [][]), b(n-i*j, i-1)], 0) od; %[] fi %p A255767 end: %p A255767 T:= n-> subsop(1=NULL, n*[b(n, n)])[]: %p A255767 seq(T(n), n=1..30); # _Alois P. Heinz_, Jul 26 2015 %t A255767 nmax = 30; T = Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[-1 + Product[1 + t x^j/(1 - x^j), {j, 1, nmax}] + O[x]^(nmax+1), x]]; %t A255767 Table[n*T[[n]], {n, 1, nmax}] // Flatten (* _Jean-François Alcover_, May 19 2018 *) %Y A255767 Cf. A000217, A003056, A038040, A066186 (row sums), A116608, A255768. %K A255767 nonn,tabf,look %O A255767 1,2 %A A255767 _Omar E. Pol_, May 21 2015 %E A255767 a(7) and beyond from _R. J. Mathar_, Jul 10 2015