This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255815 #16 Oct 12 2022 09:34:13 %S A255815 1,5,26,136,711,3716,19421,101501,530481,2772486,14490016,75730071, %T A255815 395792776,2068556381,10811024761,56502330541,295301641346, %U A255815 1543353319176,8066123361031,42156481777036,220325040452941,1151498450637621 %N A255815 Numbers of words on {0,1,2,3,4,5} having no isolated zeros. %H A255815 G. C. Greubel, <a href="/A255815/b255815.txt">Table of n, a(n) for n = 0..1000</a> %H A255815 D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Gil/gil6.html">On the Enumeration of Restricted Words over a Finite Alphabet</a>, J. Int. Seq. 19 (2016) # 16.1.3, example 11. %H A255815 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5,5). %F A255815 a(n+3) = 6*a(n+2) - 5*a(n+1)+ 5*a(n) with n>=0, a(0) = 1, a(1) = 5, a(2) = 26. %F A255815 G.f.: (-1 + x - x^2)/(-1 + 6*x - 5*x^2 + 5*x^3). - _R. J. Mathar_, Nov 07 2015 %t A255815 RecurrenceTable[{a[0] == 1, a[1] == 5, a[2]== 26, a[n] == 6 a[n - 1] - 5 a[n - 2] + 5 a[n - 3]}, a[n], {n, 0, 21}] %t A255815 LinearRecurrence[{6, -5, 5}, {1, 5, 26}, 100] (* _G. C. Greubel_, Jun 02 2016 *) %Y A255815 Cf. A255116, A255118, A254658, A254660, A255633, A255630 %K A255815 nonn,easy %O A255815 0,2 %A A255815 _Milan Janjic_, Mar 07 2015