This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255846 #25 Jan 25 2025 14:43:23 %S A255846 14,16,22,32,46,64,86,112,142,176,214,256,302,352,406,464,526,592,662, %T A255846 736,814,896,982,1072,1166,1264,1366,1472,1582,1696,1814,1936,2062, %U A255846 2192,2326,2464,2606,2752,2902,3056,3214,3376,3542,3712,3886,4064,4246,4432 %N A255846 a(n) = 2*n^2 + 14. %C A255846 This is the case k=7 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2. %C A255846 Equivalently, numbers m such that 2*m - 28 is a square. %H A255846 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A255846 G.f.: 2*(7 - 13*x + 8*x^2)/(1 - x)^3. %F A255846 a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A255846 a(n) = 2*A117619(n). %F A255846 From _Amiram Eldar_, Mar 28 2023: (Start) %F A255846 Sum_{n>=0} 1/a(n) = (1 + sqrt(7)*Pi*coth(sqrt(7)*Pi))/28. %F A255846 Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(7)*Pi*cosech(sqrt(7)*Pi))/28. (End) %F A255846 E.g.f.: 2*exp(x)*(7 + x + x^2). - _Elmo R. Oliveira_, Jan 25 2025 %t A255846 Table[2 n^2 + 14, {n, 0, 50}] %o A255846 (PARI) vector(50, n, n--; 2*n^2+14) %o A255846 (Sage) [2*n^2+14 for n in (0..50)] %o A255846 (Magma) [2*n^2+14: n in [0..50]]; %Y A255846 Cf. A117619. %Y A255846 Subsequence of A047235 and A047451. %Y A255846 Cf. similar sequences listed in A255843. %K A255846 nonn,easy %O A255846 0,1 %A A255846 _Avi Friedlich_, Mar 08 2015 %E A255846 Edited by _Bruno Berselli_, Mar 13 2015