cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255846 a(n) = 2*n^2 + 14.

This page as a plain text file.
%I A255846 #25 Jan 25 2025 14:43:23
%S A255846 14,16,22,32,46,64,86,112,142,176,214,256,302,352,406,464,526,592,662,
%T A255846 736,814,896,982,1072,1166,1264,1366,1472,1582,1696,1814,1936,2062,
%U A255846 2192,2326,2464,2606,2752,2902,3056,3214,3376,3542,3712,3886,4064,4246,4432
%N A255846 a(n) = 2*n^2 + 14.
%C A255846 This is the case k=7 of the form (n + sqrt(k))^2 + (n - sqrt(k))^2.
%C A255846 Equivalently, numbers m such that 2*m - 28 is a square.
%H A255846 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A255846 G.f.: 2*(7 - 13*x + 8*x^2)/(1 - x)^3.
%F A255846 a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F A255846 a(n) = 2*A117619(n).
%F A255846 From _Amiram Eldar_, Mar 28 2023: (Start)
%F A255846 Sum_{n>=0} 1/a(n) = (1 + sqrt(7)*Pi*coth(sqrt(7)*Pi))/28.
%F A255846 Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(7)*Pi*cosech(sqrt(7)*Pi))/28. (End)
%F A255846 E.g.f.: 2*exp(x)*(7 + x + x^2). - _Elmo R. Oliveira_, Jan 25 2025
%t A255846 Table[2 n^2 + 14, {n, 0, 50}]
%o A255846 (PARI) vector(50, n, n--; 2*n^2+14)
%o A255846 (Sage) [2*n^2+14 for n in (0..50)]
%o A255846 (Magma) [2*n^2+14: n in [0..50]];
%Y A255846 Cf. A117619.
%Y A255846 Subsequence of A047235 and A047451.
%Y A255846 Cf. similar sequences listed in A255843.
%K A255846 nonn,easy
%O A255846 0,1
%A A255846 _Avi Friedlich_, Mar 08 2015
%E A255846 Edited by _Bruno Berselli_, Mar 13 2015