A255857 Least k > 0 such that gcd(k^n+7,(k+1)^n+7) > 1, or 0 if there is no such k.
1, 0, 14, 320, 56, 675113, 224, 13, 5, 283, 33, 192, 26, 242, 5, 2, 10, 140, 5, 50, 142, 29, 18, 605962, 11, 97, 234881024, 951, 5, 3332537854, 14
Offset: 0
Keywords
Examples
For n=0, gcd(k^0+7, (k+1)^0+7) = gcd(8, 8) = 8 for any k > 0, therefore a(0)=1 is the smallest possible positive value. For n=1, gcd(k^n+7, (k+1)^n+7) = gcd(k+7, k+8) = 1, therefore a(1)=0. For n=2, we have gcd(14^2+7, 15^2+7) = gcd(203, 232) = 29, and the pair (k,k+1)=(14,15) is the smallest which yields a gcd > 1, therefore a(2)=14.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 0..36
Programs
-
Mathematica
A255857[n_] := Module[{m = 1}, While[GCD[m^n + 7, (m + 1)^n + 7] <= 1, m++]; m]; Join[{1, 0}, Table[A255857[n], {n, 2, 25}]] (* Robert Price, Oct 15 2018 *)
-
PARI
a(n,c=7,L=10^7,S=1)={n!=1&&for(a=S,L,gcd(a^n+c,(a+1)^n+c)>1&&return(a))}
-
Python
from sympy import primefactors, resultant, nthroot_mod from sympy.abc import x def A255857(n): if n == 0: return 1 k = 0 for p in primefactors(resultant(x**n+7,(x+1)**n+7)): for d in (a for a in sorted(nthroot_mod(-7,n,p,all_roots=True)) if pow(a+1,n,p)==-7%p): k = min(d,k) if k else d break return int(k) # Chai Wah Wu, May 09 2024
Extensions
a(26)-a(36) from Hiroaki Yamanouchi, Mar 12 2015
Comments