This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255872 #17 Jul 01 2025 10:42:37 %S A255872 10206,855,1836,15540,1568,560,11475,2392,1000,1470,1815,1632,2695, %T A255872 2080,6764,7788,4797,3094,3024,1944,756,5661,8232,1000,12296,5824, %U A255872 4624,4851,8262,6561,16583,14616,6545,7225,11310,18382,1995,16896,2940,23465,8464,3348 %N A255872 Smallest Rhonda number to base b = n-th composite number, A002808(n). %C A255872 See A099542 for definition of Rhonda numbers and for more links. %H A255872 Reinhard Zumkeller, <a href="/A255872/b255872.txt">Table of n, a(n) for n = 1..1000</a> %H A255872 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RhondaNumber.html">Rhonda Number</a> %e A255872 . n | b | a(n) | a(n) in base b | factorization %e A255872 . ----+----+--------------------+-----------------+-------------- %e A255872 . 1 | 4 | 10206 = A100968(1) | [2,1,3,3,1,3,2] | 2*3^6*7 %e A255872 . 2 | 6 | 855 = A100969(1) | [3,5,4,3] | 3^2*5*19 %e A255872 . 3 | 8 | 1836 = A100970(1) | [3,4,5,4] | 2^2*3^3*17 %e A255872 . 4 | 9 | 15540 = A100973(1) | [2,3,2,7,6] | 2^2*3*5*7*37 %e A255872 . 5 | 10 | 1568 = A099542(1) | [1,5,6,8] | 2^5*7^2 %e A255872 . 6 | 12 | 560 = A100971(1) | [3,10,8] | 2^4*5*7 %e A255872 . 7 | 14 | 11475 = A100972(1) | [4,2,7,9] | 3^3*5^2*17 %e A255872 . 8 | 15 | 2392 = A100974(1) | [10,9,7] | 2^3*13*23 %e A255872 . 9 | 16 | 1000 = A100975(1) | [3,14,8] | 2^3*5^3 %e A255872 . 10 | 18 | 1470 = A255735(1) | [4,9,12] | 2*3*5*7^2 %e A255872 . 11 | 20 | 1815 = A255732(1) | [4,10,15] | 3*5*11^2 %e A255872 . 12 | 21 | 1632 | [3,14,15] | 2^5*3*17 %e A255872 . 13 | 22 | 2695 | [5,12,11] | 5*7^2*11 %e A255872 . 14 | 24 | 2080 | [3,14,16] | 2^5*5*13 %e A255872 . 15 | 25 | 6764 | [10,20,14] | 2^2*19*89 %e A255872 . 16 | 26 | 7788 | [11,13,14] | 2^2*3*11*59 %e A255872 . 17 | 27 | 4797 | [6,15,18] | 3^2*13*41 %e A255872 . 18 | 28 | 3094 | [3,26,14] | 2*7*13*17 %e A255872 . 19 | 30 | 3024 = A255736(1) | [3,10,24] | 2^4*3^3*7 %e A255872 . 20 | 32 | 1944 | [1,28,24] | 2^3*3^5 %o A255872 (Haskell) %o A255872 a255872 n = head $ filter (rhonda b) $ iterate zeroless 1 where %o A255872 -- function rhonda as defined in A099542 %o A255872 zeroless x = 1 + if r < b - 1 then x else b * zeroless x' %o A255872 where (x', r) = divMod x b %o A255872 b = a002808 n %Y A255872 Cf. A002808, A100968, A100969, A100970, A100973, A099542, A100971, A100972, A100974, A100975, A255735, A255732, A255736. %Y A255872 Cf. A255880. %Y A255872 Row n=1 of A291925. %K A255872 nonn,base %O A255872 1,1 %A A255872 _Reinhard Zumkeller_, Mar 08 2015