This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255880 #16 Feb 16 2025 08:33:25 %S A255880 10206,1029,6622,44360,5439,4888,58404,20079,26296,36549,52059,61376, %T A255880 131427,29106,165504,137007,63525,61115,22784,135705,658896,563159, %U A255880 208369,115506,1078784,228436,152308,185571,539213,152532,2289001,193963,2499742,298768 %N A255880 a(n) = n-th Rhonda number to base b = n-th composite number, cf. A002808. %C A255880 See A099542 for definition of Rhonda numbers and for more links. %H A255880 Reinhard Zumkeller, <a href="/A255880/b255880.txt">Table of n, a(n) for n = 1..100</a> %H A255880 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RhondaNumber.html">Rhonda Number</a> %e A255880 Diagonalization of Rhonda numbers to base b = A002808(n), n = 1 .. 8: %e A255880 . b | n\n 1 2 3 4 5 6 7 8 %e A255880 . ----+---+--------------------------------------------------------------- %e A255880 . 4 | 1 | A100968 [10206] 11935 12150 16031 45030 94185 113022 114415 %e A255880 . 6 | 2 | A100969 855 [1029] 3813 5577 7040 7304 15104 19136 %e A255880 . 8 | 3 | A100970 1836 6318 [6622] 10530 14500 14739 17655 18550 %e A255880 . 9 | 4 | A100973 15540 21054 25331 [44360] 44660 44733 47652 50560 %e A255880 . 10 | 5 | A099542 1568 2835 4752 5265 [5439] 5664 5824 5832 %e A255880 . 12 | 6 | A100971 560 800 3993 4425 4602 [4888] 7315 8296 %e A255880 . 14 | 7 | A100972 11475 18655 20565 29631 31725 45387 [58404] 58667 %e A255880 . 15 | 8 | A100974 2392 2472 11468 15873 17424 18126 19152 [20079] %t A255880 nc = 34; (* number of composite bases *) %t A255880 compos = Select[Range[FindRoot[n == nc + PrimePi[n] + 1, {n, nc, 2nc}][[1, 2]] // Floor], CompositeQ]; %t A255880 RhondaQ[n_, b_] := Times @@ IntegerDigits[n, b] == b Total[Times @@@ FactorInteger[n]]; %t A255880 a[n_] := a[n] = Module[{b = compos[[n]], cnt = 0, k}, For[k = 1, True, k++, If[RhondaQ[k, b], cnt++; If[cnt == n, Return[k]]]]]; %t A255880 Table[Print[n, " ", a[n]]; a[n], {n, 1, nc}] (* _Jean-François Alcover_, Nov 15 2021 *) %o A255880 (Haskell) %o A255880 a255880 n = (filter (rhonda b) $ iterate zeroless 1) !! (n - 1) where %o A255880 -- function rhonda as defined in A099542 %o A255880 zeroless x = 1 + if r < b - 1 then x else b * zeroless x' %o A255880 where (x', r) = divMod x b %o A255880 b = a002808 n %Y A255880 Cf. A002808, A255872, A100968, A100969, A100970, A100973, A099542, A100971, A100972, A100974. %Y A255880 Main diagonal of A291925. %K A255880 nonn %O A255880 1,1 %A A255880 _Reinhard Zumkeller_, Mar 10 2015