This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255890 #30 Apr 26 2024 20:33:39 %S A255890 1,1,2,3,1,2,3,3,3,2,3,4,2,2,4,4,2,3,4,4,3,3,5,4,2,3,5,5,3,3,5,6,3,3, %T A255890 5,6,3 %N A255890 Polyomino Family Planners: a(n) is the least number of children of a polyomino of size n. %C A255890 For n = (2k+1)^2 + (2k)^2, a(n) = k+1 and a(m) > k+1 for m > n. %C A255890 This is a beautiful exploration of symmetry for the elementary classroom. %C A255890 A "child" is any polyomino formed by adjoining a cell at any edge. - _N. J. A. Sloane_, Mar 10 2015 %C A255890 Optimal polyominoes have at least fourfold symmetry. - _Charlie Neder_, Mar 03 2019 %F A255890 From _Charlie Neder_, Mar 03 2019: (Start) %F A255890 a(4k) >= b, where b is the least integer such that b(2b-1) >= k. %F A255890 a(4k+1) = c, where c is the least integer such that (c-1)(2c-1) >= k. (End) %e A255890 a(7) = 3 because this polyomino has only three children: %e A255890 xx xxx xx xx %e A255890 xxx has children xxx xxxx xxx %e A255890 xx xx xx xxx %e A255890 a(8) = 3 because of this polyomino: %e A255890 xxxx %e A255890 xxxx %e A255890 a(9) = 2 because of this polyomino: %e A255890 xxx %e A255890 xxx %e A255890 xxx %e A255890 a(10) = 3 because of this polyomino (not the 2*5 rectangle): %e A255890 xx %e A255890 xxx %e A255890 xxx %e A255890 xx %e A255890 a(11) = 4 because of this polyomino: %e A255890 xxx %e A255890 xxxxx %e A255890 xxx %e A255890 a(12) = 2 because of this polyomino: %e A255890 xx %e A255890 xxxx %e A255890 xxxx %e A255890 xx %e A255890 a(13) = 2 because of the following polyomino. This will be the last time 2 will be encountered in the sequence (see comments above): %e A255890 x %e A255890 xxx %e A255890 xxxxx %e A255890 xxx %e A255890 x %e A255890 a(14) = 4 because of this polyomino: %e A255890 xxx %e A255890 xxxx %e A255890 xxxx %e A255890 xxx %e A255890 a(15) = 4 because of this polyomino: %e A255890 xx %e A255890 xxxx %e A255890 xxx %e A255890 xxxx %e A255890 xx %Y A255890 Cf. A000105, A255894, A367758. %Y A255890 Row minima of A367443 (for n>=1). %K A255890 nonn,more %O A255890 0,3 %A A255890 _Gordon Hamilton_, Mar 09 2015 %E A255890 a(16)-a(36) from _Charlie Neder_, Mar 03 2019