This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255891 #23 Mar 26 2015 17:19:05 %S A255891 2,4,240,348,368,380,19364665320,20210069880,20328267960,20673770040, %T A255891 20681420760,20735165880,20940748920,20959618680,21135474360, %U A255891 21196014840,21256222680,21302746920,21380630040,21405023640,21426252120,21465896760,21522002040,21544621560 %N A255891 Numbers n such that the sum of the even divisors of n is equal to m! and the sum of the odd divisors of n is equal to k! for some integers m and k. %C A255891 Numbers n such that A000593(n) = m! and A146076(n) = k! for some m and k. %C A255891 Is this sequence finite? No further terms less than 10^6. %C A255891 No further terms less than 10^9. - _Michel Marcus_, Mar 10 2015 %C A255891 sigma(a(25711)) >= 29! + 30!. - _Hiroaki Yamanouchi_, Mar 26 2015 %H A255891 Hiroaki Yamanouchi, <a href="/A255891/b255891.txt">Table of n, a(n) for n = 1..25710</a> %e A255891 240 is in the sequence because A000593(240)= 24 = 4! and A146076(240)= 720 = 6! %p A255891 for n from 2 by 2 to 20000 do: %p A255891 y:=divisors(n):n1:=nops(y):s0:=0:s1:=0: %p A255891 for k from 1 to n1 do: %p A255891 if irem(y[k],2)=0 %p A255891 then %p A255891 s0:=s0+ y[k]: %p A255891 else %p A255891 s1:=s1+ y[k]: %p A255891 fi: %p A255891 od: %p A255891 ii:=0: %p A255891 for a from 1 to 20 while(ii=0)do: %p A255891 if s0=a! %p A255891 then %p A255891 for b from 1 to 20 while(ii=0) do: %p A255891 if s1=b! %p A255891 then %p A255891 ii:=1:print(n): %p A255891 else %p A255891 fi: %p A255891 od: %p A255891 fi: %p A255891 od: %p A255891 od: %t A255891 fQ[n_] := Block[{d = Divisors@ n, lst = Array[Factorial, {449}]}, MemberQ[lst, Plus @@ Select[d, EvenQ]] && MemberQ[lst, Plus @@ Select[d, OddQ]]]; Select[Range@10000, fQ] (* _Michael De Vlieger_, Mar 10 2015 *) %o A255891 (PARI) isoks(s) = {if (s==1, return (1)); f = 1; for (k=2, s, f *= k; if (f == s, return (1)); if (f > s, return (0)););} %o A255891 isok(n) = my(sod = sumdiv(n, d, d*(d%2))); my(sed = sigma(n) - sod); sod && sed && isoks(sed) && isoks(sod); \\ _Michel Marcus_, Mar 10 2015 %Y A255891 Cf. A000593, A146076, A245015. %K A255891 nonn %O A255891 1,1 %A A255891 _Michel Lagneau_, Mar 09 2015 %E A255891 a(7)-a(24) from _Hiroaki Yamanouchi_, Mar 26 2015