cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255895 O.g.f.: exp( Sum_{n>=1} A000364(n+1)*x^n/n ), where A000364 is the Euler numbers.

This page as a plain text file.
%I A255895 #12 Nov 05 2021 06:29:32
%S A255895 1,5,43,635,15811,626543,36670645,2968583909,316359049075,
%T A255895 42804896729263,7156058577755345,1447112885406569905,
%U A255895 347972935518441794285,98096607566761160791345,32036179679728008237066395,11996707788374286511611298267,5105803366761640532801681583635
%N A255895 O.g.f.: exp( Sum_{n>=1} A000364(n+1)*x^n/n ), where A000364 is the Euler numbers.
%C A255895 Inspired by Peter Bala's sequence A255881, which suggests the following conjecture: exp( Sum_{n>=1} A000364(n+m)*x^n/n ) is an integer series for integer m>=0.
%F A255895 a(n) ~ 2^(4*n + 7) * n^(2*n + 3/2) / (exp(2*n) * Pi^(2*n + 5/2)). - _Vaclav Kotesovec_, Nov 05 2021
%e A255895 O.g.f.: A(x) = 1 + 5*x + 43*x^2 + 635*x^3 + 15811*x^4 + 626543*x^5 +...
%e A255895 where
%e A255895 log(A(x)) = 5*x + 61*x^2/2 + 1385*x^3/3 + 50521*x^4/4 + 2702765*x^5/5 + 199360981*x^6/6 + 19391512145*x^7/7 + 2404879675441*x^8/8 +...+ A000364(n+1)*x^n/n +...
%t A255895 Table[SeriesCoefficient[Exp[Sum[Abs[EulerE[2*k+2]]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 05 2021 *)
%o A255895 (PARI) /* By the Ordinary Generating Function: */
%o A255895 {A000364(n)=polcoeff(sum(m=0, n, (2*m)!/2^m * x^m/prod(k=1, m, 1+k^2*x+x*O(x^n))), n)}
%o A255895 {a(n)=local(A=1);A=exp(sum(m=1,n,A000364(m+1)*x^m/m) +x*O(x^n));polcoeff(A,n)}
%o A255895 for(n=0,20,print1(a(n),", "))
%Y A255895 Cf. A255881, A000364.
%K A255895 nonn
%O A255895 0,2
%A A255895 _Paul D. Hanna_, Mar 09 2015