This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255906 #21 Sep 23 2023 14:27:19 %S A255906 1,1,4,16,76,400,2356,15200,106644,806320,6526580,56231024,513207740, %T A255906 4941362512,50013751812,530481210672,5880285873060,67954587978448, %U A255906 816935340368068,10196643652651664,131904973822724540,1765645473517011568,24420203895517396180 %N A255906 Number of collections of nonempty multisets with a total of n objects having color set {1,...,k} for some k<=n. %C A255906 Number of multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers. - _Gus Wiseman_, Jul 30 2018 %H A255906 Alois P. Heinz, <a href="/A255906/b255906.txt">Table of n, a(n) for n = 0..300</a> %F A255906 a(n) = Sum_{k=0..n} A255903(n,k). %e A255906 a(0) = 1: {}. %e A255906 a(1) = 1: {{1}}. %e A255906 a(2) = 4: {{1},{1}}, {{1,1}}, {{1},{2}}, {{1,2}}. %e A255906 a(3) = 16: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{1},{2}}, {{1},{2},{2}}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}, {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}. %t A255906 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A255906 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A255906 allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A255906 Table[Length[Join@@mps/@allnorm[n]],{n,6}] (* _Gus Wiseman_, Jul 30 2018 *) %o A255906 (PARI) %o A255906 R(n, k)={Vec(-1 + 1/prod(j=1, n, (1 - x^j + O(x*x^n))^binomial(k+j-1, j) ))} %o A255906 seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ _Andrew Howroyd_, Sep 23 2023 %Y A255906 Row sums of A255903. Also row sums of A317532. %Y A255906 Cf. A007716, A034691, A116539, A317073. %K A255906 nonn %O A255906 0,3 %A A255906 _Alois P. Heinz_, Mar 10 2015