This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255912 #6 Sep 02 2024 19:31:26 %S A255912 1,5,705,904405,4852631105,74099113400805,2586129891894933505, %T A255912 178907219873738420449205,22190820320340007699602667905, %U A255912 4580340005051337829651272441809605,1485137988777113358037521465779043594305,722514649061693644099760448944719529057242005 %N A255912 O.g.f.: exp( Sum_{n>=1} A000364(2*n)*x^n/n ), where A000364 is the Euler numbers. %C A255912 a(n) == 5 (mod 100) for n>=1 (conjecture). %e A255912 O.g.f.: A(x) = 1 + 5*x + 705*x^2 + 904405*x^3 + 4852631105*x^4 +... %e A255912 where %e A255912 log(A(x)) = 5*x + 1385*x^2/2 + 2702765*x^3/3 + 19391512145*x^4/4 + 370371188237525*x^5/5 + 15514534163557086905*x^6/6 + +...+ A000364(2*n)*x^n/n +... %o A255912 (PARI) /* By definition */ %o A255912 {A000364(n)=polcoeff(sum(m=0, n, (2*m)!/2^m * x^m/prod(k=1, m, 1+k^2*x+x*O(x^n))), n)} %o A255912 {a(n)=local(A=1);A=exp(sum(m=1,n,A000364(2*m)*x^m/m) +x*O(x^n));polcoeff(A,n)} %o A255912 for(n=0,20,print1(a(n),", ")) %Y A255912 Cf. A255881, A255895, A000364. %K A255912 nonn %O A255912 0,2 %A A255912 _Paul D. Hanna_, Mar 10 2015