A255914 Triangle read by rows: T(n,k) = A007318(n,k)*A238453(n,k).
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 8, 24, 8, 1, 1, 20, 80, 80, 20, 1, 1, 12, 120, 160, 120, 12, 1, 1, 42, 252, 840, 840, 252, 42, 1, 1, 32, 672, 1344, 3360, 1344, 672, 32, 1, 1, 54, 864, 6048, 9072, 9072, 6048, 864, 54, 1, 1, 40, 1080, 5760, 30240, 18144, 30240
Offset: 0
Examples
The first five terms in A002618 (n*phi(n)) are 1, 2, 6, 8, 20 and so T(4,2) = 8*6*2*1/((2*1)*(2*1)) = 24 and T(5,3) = 20*8*6*2*1/((6*2*1)*(2*1)) = 80. The triangle begins: 1; 1, 1; 1, 2, 1; 1, 6, 6, 1; 1, 8, 24, 8, 1; 1, 20, 80, 80, 20, 1; 1, 12, 120, 160, 120, 12, 1; 1, 42, 252, 840, 840, 252, 42, 1
Links
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Programs
-
Sage
q=100 #change q for more rows P=[i*euler_phi(i) for i in [0..q]] [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
Comments