cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255932 a(n) is the denominator of Gamma(n+1/2)^2/(2*n*Pi), the value of an integral with sinh in the denominator.

This page as a plain text file.
%I A255932 #18 Sep 23 2017 12:12:51
%S A255932 8,64,128,2048,2048,16384,32768,1048576,524288,4194304,8388608,
%T A255932 134217728,134217728,1073741824,2147483648,137438953472,34359738368,
%U A255932 274877906944,549755813888,8796093022208,8796093022208,70368744177664,140737488355328
%N A255932 a(n) is the denominator of Gamma(n+1/2)^2/(2*n*Pi), the value of an integral with sinh in the denominator.
%C A255932 Conjecture: a(n) <= 2^(3*n). - _Vaclav Kotesovec_, Mar 11 2015
%H A255932 MathOverflow, <a href="http://mathoverflow.net/questions/79093">An identity involving an infinite integral with a sinh in the denominator</a>
%F A255932 The n-th fraction also equals the n-th coefficient in the expansion of 2F1(1/2,1/2; 1; x) * n!*(n-1)!/2.
%F A255932 a(n) = 2^(2*n + 1 + valuation(n, 2)) = 2^A292608(n). - _Peter Luschny_, Sep 23 2017
%e A255932 1/8, 9/64, 75/128, 11025/2048, 178605/2048, 36018675/16384, 2608781175/32768, ...
%p A255932 seq(2^A292608(n), n=1..23); # _Peter Luschny_, Sep 23 2017
%t A255932 a[n_] := Gamma[n+1/2]^2/(2*n*Pi) // Denominator; Array[a, 30]
%t A255932 Table[(2*n)!^2 / (n * 2^(4*n+1) * n!^2), {n, 1, 20}] // Denominator (* _Vaclav Kotesovec_, Mar 11 2015 *)
%t A255932 b[n_] := 2*n + 1 + IntegerExponent[n,2]; Table[2^b[n], {n,1,23}] (* _Peter Luschny_, Sep 23 2017 *)
%Y A255932 Cf. A255931 (numerators), A292608.
%K A255932 frac,nonn
%O A255932 1,1
%A A255932 _Jean-François Alcover_, Mar 11 2015