cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255937 Number of distinct products of distinct factorials up to n!.

This page as a plain text file.
%I A255937 #28 May 01 2022 13:46:10
%S A255937 1,1,2,4,8,16,28,56,108,204,332,664,1114,2228,4078,7018,11402,22804,
%T A255937 40638,81276,140490,230328,391544,783088,1287034,2273676,3903626,
%U A255937 6837760,10368184,20736368,34081198,68162396
%N A255937 Number of distinct products of distinct factorials up to n!.
%H A255937 Paul Erdős and Ron L. Graham, <a href="http://www.renyi.hu/~p_erdos/1976-25.pdf">On products of factorials</a>, Bull. Inst. Math. Acad. Sinica 4:2 (1976), pp. 337-355.
%F A255937 Erdős and Graham prove that log a(n) ~ n log log n/log n.
%F A255937 a(p) = 2*a(p-1) for prime p. - _Jon E. Schoenfield_, Apr 01 2015
%e A255937 a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4.
%p A255937 s:= proc(n) option remember; (f-> `if`(n=0, {f},
%p A255937       map(x-> [x, x*f][], s(n-1))))(n!)
%p A255937     end:
%p A255937 a:= n-> nops(s(n)):
%p A255937 seq(a(n), n=0..20);  # _Alois P. Heinz_, Mar 16 2015
%t A255937 a[n_] := a[n] = If[n == 0, 1, If[PrimeQ[n], 2 a[n-1], Times @@@ ((Subsets[Range[n]] // Rest) /. k_Integer -> k!) // Union // Length]];
%t A255937 Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* _Jean-François Alcover_, May 01 2022 *)
%o A255937 (PARI) a(n)=my(v=[1],N=n!); for(k=2,n-1, v=Set(concat(v,v*k!))); #v + sum(i=1,#v, !setsearch(v,N*v[i]))
%Y A255937 Cf. A058295, A000142, A001013, A060957.
%K A255937 nonn,more
%O A255937 0,3
%A A255937 _Charles R Greathouse IV_, Mar 11 2015
%E A255937 More terms from _Alois P. Heinz_, Mar 16 2015
%E A255937 a(31) (=2*a(30)) from _Jon E. Schoenfield_, Apr 01 2015