This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255937 #28 May 01 2022 13:46:10 %S A255937 1,1,2,4,8,16,28,56,108,204,332,664,1114,2228,4078,7018,11402,22804, %T A255937 40638,81276,140490,230328,391544,783088,1287034,2273676,3903626, %U A255937 6837760,10368184,20736368,34081198,68162396 %N A255937 Number of distinct products of distinct factorials up to n!. %H A255937 Paul Erdős and Ron L. Graham, <a href="http://www.renyi.hu/~p_erdos/1976-25.pdf">On products of factorials</a>, Bull. Inst. Math. Acad. Sinica 4:2 (1976), pp. 337-355. %F A255937 Erdős and Graham prove that log a(n) ~ n log log n/log n. %F A255937 a(p) = 2*a(p-1) for prime p. - _Jon E. Schoenfield_, Apr 01 2015 %e A255937 a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4. %p A255937 s:= proc(n) option remember; (f-> `if`(n=0, {f}, %p A255937 map(x-> [x, x*f][], s(n-1))))(n!) %p A255937 end: %p A255937 a:= n-> nops(s(n)): %p A255937 seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 16 2015 %t A255937 a[n_] := a[n] = If[n == 0, 1, If[PrimeQ[n], 2 a[n-1], Times @@@ ((Subsets[Range[n]] // Rest) /. k_Integer -> k!) // Union // Length]]; %t A255937 Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* _Jean-François Alcover_, May 01 2022 *) %o A255937 (PARI) a(n)=my(v=[1],N=n!); for(k=2,n-1, v=Set(concat(v,v*k!))); #v + sum(i=1,#v, !setsearch(v,N*v[i])) %Y A255937 Cf. A058295, A000142, A001013, A060957. %K A255937 nonn,more %O A255937 0,3 %A A255937 _Charles R Greathouse IV_, Mar 11 2015 %E A255937 More terms from _Alois P. Heinz_, Mar 16 2015 %E A255937 a(31) (=2*a(30)) from _Jon E. Schoenfield_, Apr 01 2015