This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255965 #9 May 29 2018 00:46:57 %S A255965 1,1,9,45,201,819,3357,13329,52215,199686,750733,2774793,10112184, %T A255965 36357280,129131448,453379226,1574884565,5415956550,18450934294, %U A255965 62303210591,208624947952,693066815809,2285129922950,7480504628754,24320897894515,78557786077315 %N A255965 Expansion of Product_{k>=1} 1/(1-x^k)^binomial(k+6,7). %C A255965 In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)). %H A255965 Vaclav Kotesovec, <a href="/A255965/b255965.txt">Table of n, a(n) for n = 0..1000</a> %H A255965 Vaclav Kotesovec, <a href="/A255965/a255965.txt">Asymptotic formula</a> %F A255965 G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)^8)). - _Ilya Gutkovskiy_, May 28 2018 %t A255965 nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)/7!),{k,1,nmax}],{x,0,nmax}],x] %Y A255965 Cf. A000041 (m=1), A000219 (m=2), A000294 (m=3), A000335 (m=4), A000391 (m=5), A000417 (m=6), A000428 (m=7). %K A255965 nonn %O A255965 0,3 %A A255965 _Vaclav Kotesovec_, Mar 12 2015