A255974 R(k), the minimal alternating triangular-number representation of k, concatenated for k = 0, 1, 2,....
0, 1, 3, -1, 3, 6, -3, 1, 6, -1, 6, 10, -3, 10, -3, 1, 10, -1, 10, 15, -6, 3, -1, 15, -3, 15, -3, 1, 15, -1, 15, 21, -6, 1, 21, -6, 3, -1, 21, -3, 21, -3, 1, 21, -1, 21, 28, -6, 28, -6, 1, 28, -6, 3, -1, 28, -3, 28, -3, 1, 28, -1, 28, 36, -10, 3, 36, -6, 36
Offset: 0
Examples
R(0) = 0 R(1) = 1 R(2) = 3 - 1 R(3) = 3 R(4) = 6 - 3 + 1 R(5) = 6 - 1 R(8) = 10 - 3 + 1 R(11) = 15 - 6 + 3 - 1
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
b[n_] := n (n + 1)/2; bb = Table[b[n], {n, 0, 1000}]; s[n_] := Table[b[n], {k, 1, n}]; h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]] t = Table[r[n], {n, 0, 120}] (* A255974 actual representations *) Flatten[t] (* A255974 sequence *)
Comments