This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255979 #24 May 05 2016 10:08:35 %S A255979 0,0,1,1,5,1,43,13,249,19,2291,32,6397,1379,3737,36599,423953,4727, %T A255979 2579419,436486,1935539,1262563,30364247,1549256,1028011945,94055426, %U A255979 2754232963,230491358,77544004469,7188548,1277242663471,4089553744057,235736847903 %N A255979 a(n) = smallest nonnegative integer solution z to the system of congruences: z == 0 (mod n), z == 1 (mod A038610(n)) if n is in A033948; or z == 0 (mod n), z == -1 (mod A038610(n)) if n is in A033949. %H A255979 Umberto Cerruti, <a href="/A255979/a255979.pdf">Il Teorema Cinese dei Resti</a> (in Italian), 2015. The sequence is on page 26. %t A255979 v[n_] := Module[{s}, s = Select[Range[n], CoprimeQ[n, #] == True &]; LCM @@ s]; g1[n_] := If[n == 1, 0, If[IntegerQ[PrimitiveRoot[n]], PowerMod[n, -1, v[n]], PowerMod[-n, -1, v[n]]]]; Table[g1[k], {k, 1, 40}] %Y A255979 Cf. A033948, A033949, A038610. %K A255979 nonn,easy %O A255979 1,5 %A A255979 _Bruno Berselli_, Mar 12 2015 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)