This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255982 #24 Dec 17 2020 15:00:19 %S A255982 1,0,1,0,2,4,0,5,29,30,0,14,184,486,336,0,42,1148,5880,9744,5040,0, %T A255982 132,7228,64464,192984,230400,95040,0,429,46224,679195,3279060, %U A255982 6792750,6308280,2162160,0,1430,300476,7043814,51622600,165293700,259518600,196756560,57657600 %N A255982 Number T(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A255982 Alois P. Heinz, <a href="/A255982/b255982.txt">Rows n = 0..135, flattened</a> %F A255982 T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A237018(n,k-i). %e A255982 A(3,1) = 5: %e A255982 [||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||]. %e A255982 . %e A255982 A(2,2) = 4: %e A255982 ._______. ._______. ._______. ._______. %e A255982 | | | | | | | | | | | %e A255982 |___| | | |___| |___|___| |_______| %e A255982 | | | | | | | | | | | %e A255982 |___|___| |___|___| |_______| |___|___|. %e A255982 . %e A255982 Triangle T(n,k) begins: %e A255982 1 %e A255982 0, 1; %e A255982 0, 2, 4; %e A255982 0, 5, 29, 30; %e A255982 0, 14, 184, 486, 336; %e A255982 0, 42, 1148, 5880, 9744, 5040; %e A255982 0, 132, 7228, 64464, 192984, 230400, 95040; %e A255982 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160; %e A255982 ... %p A255982 b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1, %p A255982 A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2))) %p A255982 end: %p A255982 A:= proc(n, k) option remember; `if`(n=0, 1, %p A255982 -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k)) %p A255982 end: %p A255982 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): %p A255982 seq(seq(T(n, k), k=0..n), n=0..10); %t A255982 b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[ A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; %t A255982 A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; %t A255982 T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 20 2016, after _Alois P. Heinz_ *) %Y A255982 Columns k=0-10 give: A000007, A000108 (for n>0), A258416, A258417, A258418, A258419, A258420, A258421, A258422, A258423, A258424. %Y A255982 Main diagonal gives A001761. %Y A255982 Row sums give A258425. %Y A255982 T(2n,n) give A258426. %Y A255982 Cf. A237018, A256061, A258427. %K A255982 nonn,tabl %O A255982 0,5 %A A255982 _Alois P. Heinz_, Mar 13 2015