cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255984 Decimal expansion of sqrt(3*Pi/2), the value of an oscillatory integral.

This page as a plain text file.
%I A255984 #20 Oct 01 2022 14:18:35
%S A255984 2,1,7,0,8,0,3,7,6,3,6,7,4,8,0,2,9,7,8,0,8,9,0,4,3,8,8,1,8,7,2,3,8,7,
%T A255984 3,0,3,6,1,6,3,2,6,6,8,4,3,5,3,6,3,7,7,8,0,9,2,8,6,3,6,9,8,3,3,1,1,1,
%U A255984 0,4,6,1,5,8,5,8,8,8,7,1,8,5,7,5,0,3,4,8,8,4,4,7,0,4,3,4,6,5,4,1,2,8,9
%N A255984 Decimal expansion of sqrt(3*Pi/2), the value of an oscillatory integral.
%H A255984 G. C. Greubel, <a href="/A255984/b255984.txt">Table of n, a(n) for n = 1..10000</a>
%H A255984 David H. Bailey and Jonathan M. Borwein, <a href="http://www.davidhbailey.com/dhbpapers/oscillatory.pdf">Experimental computation with oscillatory integrals</a>.
%H A255984 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A255984 Limit_{p -> infinity} (integral_{0..infinity} abs(sin(t)/t)^p dt) = sqrt(3*Pi/2).
%e A255984 2.17080376367480297808904388187238730361632668435363778...
%p A255984 evalf[120](sqrt(3*Pi/2)); # _Muniru A Asiru_, Mar 01 2019
%t A255984 RealDigits[Sqrt[3*Pi/2], 10, 103]//First
%o A255984 (PARI) sqrt(3*Pi/2) \\ _Charles R Greathouse IV_, Apr 20 2016
%o A255984 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(3*Pi(R)/2); // _G. C. Greubel_, Feb 28 2019
%o A255984 (Sage) numerical_approx(sqrt(3*pi/2), digits=100) # _G. C. Greubel_, Feb 28 2019
%Y A255984 Cf. A197723 (3*Pi/2).
%K A255984 nonn,cons,easy
%O A255984 1,1
%A A255984 _Jean-François Alcover_, Mar 13 2015