cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A255993 Number of length n+2 0..1 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

8, 16, 28, 45, 68, 98, 136, 183, 240, 308, 388, 481, 588, 710, 848, 1003, 1176, 1368, 1580, 1813, 2068, 2346, 2648, 2975, 3328, 3708, 4116, 4553, 5020, 5518, 6048, 6611, 7208, 7840, 8508, 9213, 9956, 10738, 11560, 12423, 13328, 14276, 15268, 16305
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Row 2 of A255992.
Let T(n,k) = n*k + binomial(k+n, n+1), then A001477 (n=0), A000096 (n=1), and presumably this sequence (n=2). Seen this way a(0)=0, a(1)=3 and the offset here should be 2 (as is also hinted by the name: "Number of length n+2 .."). - Peter Luschny, Aug 25 2019

Examples

			Some solutions for n=4:
  0  0  0  1  0  0  1  1  0  0  1  0  0  1  1  1
  0  1  1  1  0  1  1  0  1  0  1  1  0  0  1  1
  0  1  1  0  0  1  1  0  0  0  1  0  1  0  1  1
  0  0  1  0  1  0  1  0  1  1  0  0  1  1  0  1
  1  1  1  1  1  0  1  0  1  0  1  1  1  1  0  0
  1  1  1  1  0  0  0  0  1  0  1  1  0  1  0  0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = (1/6)*n^3 + n^2 + (23/6)*n + 3.
Empirical g.f.: x*(2 - x)*(4 - 6*x + 3*x^2) / (1 - x)^4. - Colin Barker, Jan 25 2018
Empirical: a(n) = A000292(n+3) - A000124(n+1). - Torlach Rush, Aug 04 2018

A255988 Number of length n+4 0..1 arrays with at most one downstep in every 4 consecutive neighbor pairs.

Original entry on oeis.org

26, 45, 80, 144, 256, 451, 796, 1413, 2510, 4448, 7872, 13943, 24718, 43817, 77636, 137540, 243712, 431899, 765360, 1356169, 2403034, 4258172, 7545592, 13370799, 23692770, 41983189, 74394040, 131826104, 233594880, 413927683, 733476228
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Column 4 of A255992.

Examples

			Some solutions for n=4:
..1....1....0....1....0....0....1....1....1....1....0....0....0....1....1....1
..1....0....0....1....0....1....0....0....1....1....0....1....1....1....0....1
..1....0....0....0....1....1....0....0....1....1....0....0....0....1....0....0
..0....1....0....1....1....0....0....0....1....1....1....1....0....0....0....0
..1....1....1....1....0....0....0....1....1....0....1....1....0....0....1....1
..1....0....1....1....0....0....0....0....1....1....1....1....1....0....0....1
..1....0....1....1....0....1....1....0....0....1....1....0....1....1....0....1
..1....1....0....1....1....0....0....0....1....1....0....0....0....0....1....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +3*a(n-4) -2*a(n-5).
Empirical g.f.: x*(26 - 7*x + 16*x^2 + 29*x^3 - 30*x^4) / (1 - 2*x + x^2 - 3*x^4 + 2*x^5). - Colin Barker, Jan 24 2018

A255989 Number of length n+5 0..1 arrays with at most one downstep in every 5 consecutive neighbor pairs.

Original entry on oeis.org

42, 68, 114, 196, 337, 568, 945, 1574, 2645, 4476, 7568, 12736, 21365, 35852, 60308, 101608, 171148, 287940, 484045, 813826, 1369115, 2304172, 3877545, 6523278, 10972180, 18456064, 31049291, 52240182, 87891550, 147861804, 248739774
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Column 5 of A255992.

Examples

			Some solutions for n=4:
..1....0....1....0....0....1....0....0....0....0....0....0....1....1....0....1
..1....1....0....1....0....0....0....1....1....0....0....1....1....1....1....0
..0....1....1....0....1....0....1....0....0....1....0....0....0....0....0....0
..0....1....1....1....1....0....1....0....0....0....0....0....0....0....0....1
..1....1....1....1....1....0....1....0....1....0....0....0....0....1....0....1
..1....1....1....1....1....1....1....0....1....0....0....1....1....1....0....1
..1....1....0....1....0....1....1....0....1....1....1....1....1....1....1....1
..0....1....0....0....0....0....0....1....1....1....0....0....1....0....0....1
..0....1....0....1....0....0....0....0....1....0....0....0....0....1....1....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +4*a(n-5) -3*a(n-6).
Empirical g.f.: x*(42 - 16*x + 20*x^2 + 36*x^3 + 59*x^4 - 78*x^5) / ((1 + x - x^3)*(1 - 3*x + 4*x^2 - 3*x^3)). - Colin Barker, Jan 24 2018

A255990 Number of length n+6 0..1 arrays with at most one downstep in every 6 consecutive neighbor pairs.

Original entry on oeis.org

64, 98, 156, 257, 428, 705, 1134, 1797, 2848, 4560, 7384, 12021, 19508, 31444, 50432, 80828, 129904, 209549, 338650, 546939, 881612, 1418697, 2281990, 3673412, 5919888, 9546459, 15393334, 24807246, 39956320, 64344494, 103638460, 166985169
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Column 6 of A255992.

Examples

			Some solutions for n=4:
..0....0....0....0....0....0....0....0....0....1....0....0....0....0....0....0
..0....1....0....0....0....0....1....1....1....1....0....0....0....1....0....1
..0....0....0....0....0....0....1....0....0....1....0....0....1....0....0....0
..0....0....0....0....0....0....0....0....0....1....0....0....0....0....0....1
..0....0....1....1....0....1....0....0....1....1....0....1....0....0....0....1
..0....0....1....0....1....0....0....0....1....1....0....0....0....0....0....1
..0....1....1....0....1....0....0....1....1....0....0....1....0....0....1....1
..0....1....1....0....1....0....0....1....1....0....1....1....0....1....0....1
..0....0....1....1....1....0....0....0....0....0....1....1....0....1....0....1
..0....1....0....1....1....0....0....0....1....0....0....1....0....1....1....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +5*a(n-6) -4*a(n-7).
Empirical g.f.: x*(64 - 30*x + 24*x^2 + 43*x^3 + 70*x^4 + 106*x^5 - 168*x^6) / (1 - 2*x + x^2 - 5*x^6 + 4*x^7). - Colin Barker, Jan 24 2018

A255991 Number of length n+7 0..1 arrays with at most one downstep in every 7 consecutive neighbor pairs.

Original entry on oeis.org

93, 136, 207, 328, 530, 854, 1352, 2088, 3175, 4824, 7406, 11528, 18124, 28562, 44768, 69584, 107469, 165670, 256009, 397452, 619647, 967640, 1509297, 2347848, 3643074, 5646004, 8753601, 13591820, 21137644, 32901050, 51205059, 79628272, 123712139
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Column 7 of A255992.

Examples

			Some solutions for n=4:
..0....1....1....0....0....0....1....1....0....1....1....0....0....0....0....0
..0....0....1....0....0....1....1....1....1....0....1....1....0....1....1....0
..1....0....0....1....1....0....1....1....0....0....1....1....0....1....1....0
..0....0....0....0....0....0....0....1....0....0....1....1....0....0....1....0
..1....0....1....1....0....0....0....1....1....0....1....1....0....0....1....0
..1....1....1....1....1....1....0....1....1....1....0....1....0....0....1....1
..1....1....1....1....1....1....0....1....1....1....0....1....1....0....1....0
..1....1....1....1....1....1....0....0....1....1....0....1....1....1....1....0
..1....1....1....1....1....1....1....1....1....0....1....0....1....1....0....0
..1....1....0....1....1....0....1....1....1....0....1....0....1....1....1....0
..0....0....0....1....0....1....0....1....1....0....1....0....0....0....1....1
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +6*a(n-7) -5*a(n-8).
Empirical g.f.: x*(93 - 50*x + 28*x^2 + 50*x^3 + 81*x^4 + 122*x^5 + 174*x^6 - 320*x^7) / (1 - 2*x + x^2 - 6*x^7 + 5*x^8). - Colin Barker, Jan 25 2018

A255994 Number of length n+3 0..1 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

16, 32, 53, 80, 114, 156, 207, 268, 340, 424, 521, 632, 758, 900, 1059, 1236, 1432, 1648, 1885, 2144, 2426, 2732, 3063, 3420, 3804, 4216, 4657, 5128, 5630, 6164, 6731, 7332, 7968, 8640, 9349, 10096, 10882, 11708, 12575, 13484, 14436, 15432, 16473, 17560
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Row 3 of A255992.

Examples

			Some solutions for n=4:
..0....1....0....0....1....0....1....0....1....1....0....0....1....1....0....0
..1....1....0....0....1....1....1....0....0....1....1....1....1....0....1....0
..0....0....0....0....1....0....0....1....0....1....1....1....1....1....0....1
..1....0....1....1....0....0....0....1....0....1....1....0....0....1....0....1
..1....0....0....0....0....0....1....1....0....1....0....0....0....1....0....0
..1....0....0....0....1....0....1....0....1....1....0....0....0....1....1....0
..1....0....1....0....1....1....1....0....1....1....1....0....0....1....1....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = (1/6)*n^3 + (3/2)*n^2 + (31/3)*n + 4.
Empirical g.f.: x*(16 - 32*x + 21*x^2 - 4*x^3) / (1 - x)^4. - Colin Barker, Jan 25 2018

A255995 Number of length n+4 0..1 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

32, 64, 100, 144, 196, 257, 328, 410, 504, 611, 732, 868, 1020, 1189, 1376, 1582, 1808, 2055, 2324, 2616, 2932, 3273, 3640, 4034, 4456, 4907, 5388, 5900, 6444, 7021, 7632, 8278, 8960, 9679, 10436, 11232, 12068, 12945, 13864, 14826, 15832, 16883, 17980
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Row 4 of A255992.

Examples

			Some solutions for n=4:
..0....1....1....1....0....1....1....1....0....1....1....0....0....1....0....0
..0....1....0....1....1....1....0....0....1....0....0....0....0....0....0....1
..0....1....0....0....0....0....0....0....1....0....0....0....0....1....1....0
..0....0....0....0....0....1....1....0....1....1....0....1....0....1....0....0
..0....0....0....1....1....1....1....0....0....1....1....1....0....1....0....1
..0....0....0....1....1....1....1....0....0....1....0....0....1....1....0....1
..0....0....0....0....0....1....0....0....0....1....1....0....0....1....0....1
..1....1....0....0....1....1....0....1....1....1....1....0....0....1....1....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = (1/6)*n^3 + 2*n^2 + (143/6)*n + 6 for n>2.
Empirical g.f.: x*(32 - 64*x + 36*x^2 - 4*x^4 + x^5) / (1 - x)^4. - Colin Barker, Jan 25 2018

A255996 Number of length n+5 0..1 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

64, 128, 188, 256, 337, 428, 530, 644, 771, 912, 1068, 1240, 1429, 1636, 1862, 2108, 2375, 2664, 2976, 3312, 3673, 4060, 4474, 4916, 5387, 5888, 6420, 6984, 7581, 8212, 8878, 9580, 10319, 11096, 11912, 12768, 13665, 14604, 15586, 16612, 17683, 18800
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Row 5 of A255992.

Examples

			Some solutions for n=4:
..1....0....0....0....1....0....0....0....1....1....0....0....0....0....1....0
..1....0....0....1....1....1....0....0....1....0....1....1....0....0....1....1
..1....1....1....1....1....1....1....1....1....0....1....1....1....0....0....0
..1....0....1....1....1....0....0....0....1....0....0....0....1....0....0....1
..1....0....0....1....0....1....1....1....1....0....0....0....0....0....0....1
..1....0....1....1....0....1....1....1....1....0....0....1....0....1....0....1
..0....0....1....0....0....1....1....1....0....1....0....1....0....0....0....1
..0....0....1....1....1....1....1....0....0....1....1....1....0....0....1....1
..1....1....0....1....0....1....1....1....0....1....0....0....0....1....0....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = (1/6)*n^3 + (5/2)*n^2 + (145/3)*n + 12 for n>3.
Empirical g.f.: x*(64 - 128*x + 60*x^2 + 16*x^3 - 7*x^4 - 8*x^5 + 4*x^6) / (1 - x)^4. - Colin Barker, Jan 26 2018

A255997 Number of length n+6 0..1 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

128, 256, 354, 451, 568, 705, 854, 1016, 1192, 1383, 1590, 1814, 2056, 2317, 2598, 2900, 3224, 3571, 3942, 4338, 4760, 5209, 5686, 6192, 6728, 7295, 7894, 8526, 9192, 9893, 10630, 11404, 12216, 13067, 13958, 14890, 15864, 16881, 17942, 19048, 20200
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Row 6 of A255992.

Examples

			Some solutions for n=4:
..0....0....0....1....1....0....1....0....1....1....1....0....1....0....0....0
..1....1....0....1....1....1....1....1....0....1....0....1....0....0....0....0
..0....0....0....0....0....0....1....0....0....0....0....1....0....1....1....0
..0....0....1....0....0....0....1....0....0....0....0....0....0....1....1....0
..1....1....0....0....0....1....1....1....1....0....0....0....0....0....0....0
..1....1....0....0....0....1....1....1....1....0....1....0....0....0....0....1
..0....0....0....0....0....1....1....1....1....0....0....1....1....0....1....1
..1....0....0....0....0....1....0....0....1....1....1....1....1....1....1....1
..1....1....0....0....0....1....1....0....1....1....1....0....0....1....0....1
..1....1....0....1....0....1....1....0....0....1....1....0....1....0....1....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = (1/6)*n^3 + 3*n^2 + (533/6)*n + 28 for n>4.
Empirical g.f.: x*(128 - 256*x + 98*x^2 + 59*x^3 - 8*x^4 - 21*x^5 - 8*x^6 + 9*x^7) / (1 - x)^4. - Colin Barker, Jan 26 2018

A255998 Number of length n+7 0..1 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

256, 512, 667, 796, 945, 1134, 1352, 1584, 1831, 2094, 2374, 2672, 2989, 3326, 3684, 4064, 4467, 4894, 5346, 5824, 6329, 6862, 7424, 8016, 8639, 9294, 9982, 10704, 11461, 12254, 13084, 13952, 14859, 15806, 16794, 17824, 18897, 20014, 21176, 22384, 23639
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2015

Keywords

Comments

Row 7 of A255992.

Examples

			Some solutions for n=4:
..1....1....0....0....0....0....0....1....0....0....1....0....0....0....0....1
..0....1....0....1....0....0....0....0....0....0....0....0....1....1....0....1
..1....1....0....1....0....0....0....1....0....0....1....1....1....1....1....0
..1....0....0....0....0....1....0....1....0....0....1....0....1....0....1....0
..1....1....0....0....1....1....1....1....0....0....1....0....1....0....0....0
..0....1....0....0....0....0....1....1....1....0....1....0....1....0....1....0
..0....1....0....0....0....0....1....0....1....0....0....1....0....0....1....1
..0....0....1....0....1....0....1....0....1....0....1....1....0....1....1....1
..0....0....0....0....1....0....1....1....1....0....1....0....0....0....0....1
..1....0....1....0....1....0....1....1....1....1....1....0....0....0....1....1
..0....1....1....0....1....0....0....0....1....1....1....1....0....1....1....0
		

Crossrefs

Cf. A255992.

Formula

Empirical: a(n) = (1/6)*n^3 + (7/2)*n^2 + (454/3)*n + 64 for n>5.
Empirical g.f.: x*(256 - 512*x + 155*x^2 + 176*x^3 - 29*x^4 - 26*x^5 - 31*x^6 - 4*x^7 + 16*x^8) / (1 - x)^4. - Colin Barker, Jan 26 2018
Showing 1-10 of 10 results.