This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256009 #28 Dec 17 2017 07:15:17 %S A256009 1,1,2,1,2,4,1,2,4,8,1,2,5,8,16,1,2,6,10,16,32,1,2,7,12,22,32,64,1,2, %T A256009 8,14,29,44,64,128,1,2,9,16,37,58,93,128,256 %N A256009 Triangle read by rows: Largest cardinality of a set of Hamming diameter <= k in {0,1}^n, k <= n. %C A256009 Size of largest clique in graph with vertices {0,1}^n, edges joining points with distance <= k. %C A256009 By considering balls of radius k, a(n,2*k) >= A008949(n,k). %C A256009 By considering Cartesian products, a(n1 + n2, k1 + k2) >= a(n1,k1)*a(n2,k2). %C A256009 a(n,0) = 1. %C A256009 a(n,1) = 2 for n >= 1. %C A256009 a(n,n) = 2^n. %C A256009 a(n,2) = n + 1 for n >= 2. %C A256009 a(n,n-1) = 2^(n-1). %C A256009 a(n,3) >= 2n for n >= 4, and this appears to be an equality. - _Robert Israel_, Apr 20 2016 %H A256009 MathOverflow question, <a href="http://mathoverflow.net/questions/205877/isoperimetric-inequality-on-the-hamming-cube/205904">Isoperimetric inequality on the Hamming cube</a> %e A256009 Triangle begins %e A256009 1 %e A256009 1 2 %e A256009 1 2 4 %e A256009 1 2 4 8 %e A256009 1 2 5 8 16 %e A256009 1 2 6 10 16 32 %e A256009 1 2 7 12 22 32 64 %e A256009 1 2 8 14 29 44 64 128 %e A256009 1 2 9 16 37 58 93 128 256 %e A256009 a(4,2) = 5: a suitable set of diameter <= 2 is {0000, 0001, 0010, 0100, 1000}. %p A256009 clist:= proc(c,n) local V; %p A256009 V:= Vector(n); %p A256009 V[convert(c,list)]:= 1; %p A256009 convert(V,list); %p A256009 end proc: %p A256009 f:= proc(n,k) %p A256009 uses GraphTheory, combinat; %p A256009 local Verts, dist, E, G, V0, G0, vk, Vk, G1; %p A256009 if k = 0 then return 1 %p A256009 elif k >= n then return 2^n %p A256009 fi; %p A256009 Verts:= map(clist, convert(powerset(n),list), n); %p A256009 dist:= Matrix(2^n,2^n,shape=symmetric,(i,j) -> convert(abs~(Verts[i]-Verts[j]),`+`)); %p A256009 E:= select(e -> dist[e[1],e[2]]<=k, {seq(seq({i,j},j=i+1..2^n),i=1..2^n)}); %p A256009 G:= Graph(2^n,E); %p A256009 V0:= Neighborhood(G,1,'open'); %p A256009 G0:= InducedSubgraph(G,V0); %p A256009 vk:= select(j -> dist[1,j] = k, V0); %p A256009 Vk:= Neighborhood(G0,vk[1],'open'); %p A256009 G1:= InducedSubgraph(G0, Vk); %p A256009 CliqueNumber(G1)+2; %p A256009 end proc: %p A256009 seq(seq(f(n,k), k=0..n),n=0..6); %o A256009 (MATLAB with CPLEX API) %o A256009 function s = A256009( n,k ) %o A256009 if k == 0 %o A256009 s = 1; %o A256009 return; %o A256009 elseif k >= n %o A256009 s = 2^n; %o A256009 return; %o A256009 end %o A256009 cplex = Cplex('problem'); %o A256009 H = dec2bin(0:2^n-1) - '0'; %o A256009 cplex.Model.sense = 'maximize'; %o A256009 cplex.Param.mip.display.Cur = 0; %o A256009 obj = ones(2^n,1); %o A256009 ctype = char('B'*ones(1,2^n)); %o A256009 cplex.addCols(obj,[],zeros(2^n,1),[],ctype); %o A256009 R = sum(H,2) * ones(1,2^n); %o A256009 D = R + R' - 2*H*H'; %o A256009 [ros,cols] = find(triu(D) > k); %o A256009 ncons = numel(ros); %o A256009 for i=1:ncons %o A256009 cplex.addSOSs('1',[ros(i),cols(i)]',[1,2]'); %o A256009 end %o A256009 cplex.solve(); %o A256009 s = cplex.Solution.objval; %o A256009 end %Y A256009 Cf. A008949. %K A256009 nonn,tabl,more %O A256009 0,3 %A A256009 _Robert Israel_, May 06 2015