A256010 Product of n and the total number of parts in all partitions of n. Also, product of n and the sum of largest parts of all partitions of n.
0, 1, 6, 18, 48, 100, 210, 378, 688, 1152, 1920, 3025, 4788, 7228, 10920, 16020, 23408, 33405, 47592, 66462, 92600, 127092, 173778, 234738, 316176, 421275, 559572, 736938, 967260, 1260137, 1636890, 2112185, 2717664, 3477078, 4435708, 5630660, 7128504, 8984044, 11293638, 14140893, 17661840, 21980264, 27291222
Offset: 0
Keywords
Examples
For n = 6 the total number of parts in all partitions of 6 is equal to 35 so a(n) = 6 * 35 = 210. On the other hand, the sum of largest parts of all partitions of 6 is 1 + 2 + 3 + 2 + 4 + 3 + 5 + 2 + 4 + 3 + 6 = 35, so a(6) is also 6 * 35 = 210. Illustration of three views of a three-dimensional model of partitions after 6th stage: . . y . . _ | _ _ _ _ _ _ . _|_| | |_ _ _ | . | |_| | |_ _ _|_ | . _|_|_| | |_ _ | | . |_|_|_| | |_ _|_ _|_ | . _|_|_| | |_ _ _ | | . | | |_| | |_ _ _|_ | | . _|_|_|_| | |_ _ | | | . | | | |_| | |_ _|_ | | | . _|_|_|_|_| | |_ _ | | | | . _|_|_|_|_|_| | |_ | | | | | . |_|_|_|_|_|_| | |_|_|_|_|_|_| . z _ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ x . | _ _ _ _ _ _ . | |_| | | | | | . | |_ _| | | | | . | |_ _ _| | | | . | |_ _ _ _| | | . | |_ _ _ _ _| | . | |_ _ _ _ _ _| . | . . z . For n = 6 the areas of the views are A006128(6) = 35, A066186(6) = 6 * 11 = 66 and A000290(6) = 6^2 = 36. The structure contains A000041(6) = 11 pieces and the volume is equal to a(6) = 6 * 35 = 210.
Programs
-
Mathematica
lim = 42; CoefficientList[Series[Sum[n x^n Product[1/(1 - x^k), {k, n}], {n, lim}], {x, 0, lim}], x] Range[0, lim] (* Michael De Vlieger, Jul 14 2015, after N. J. A. Sloane at A006128 *)
Formula
a(n) = n * A006128(n).
Comments