cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A256019 a(n) = Sum_{i=1..n-1} (i^3 * a(i)), a(1)=1.

This page as a plain text file.
%I A256019 #14 Oct 23 2018 09:27:53
%S A256019 1,1,9,252,16380,2063880,447861960,154064514240,79035095805120,
%T A256019 57695619937737600,57753315557675337600,76927416322823549683200,
%U A256019 133007502822161917402252800,292350491203111894450151654400,802502098352542150265666291328000
%N A256019 a(n) = Sum_{i=1..n-1} (i^3 * a(i)), a(1)=1.
%C A256019 a(n) = A158621(n-1) for n > 2. - _Georg Fischer_, Oct 23 2018
%F A256019 Product_{i=2..n-1} (i^3 + 1), for n>2.
%F A256019 a(n) ~ cosh(sqrt(3)*Pi/2) / (2*Pi) * ((n-1)!)^3.
%F A256019 a(n) = A255433(n-1)/2.
%t A256019 Clear[a]; a[1]=1; a[n_]:= a[n] = Sum[i^3*a[i],{i,1,n-1}]; Table[a[n],{n,1,20}]
%t A256019 Flatten[{1, Table[FullSimplify[Cosh[Sqrt[3]*Pi/2] * Gamma[n+1] * Gamma[n-1/2 - I*Sqrt[3]/2] * Gamma[n-1/2 + I*Sqrt[3]/2] / (2*Pi)],{n,2,20}]}]
%Y A256019 Cf. A001710, A051893, A158621, A256020.
%K A256019 nonn
%O A256019 1,3
%A A256019 _Vaclav Kotesovec_, Mar 13 2015