This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A256033 #22 Nov 23 2017 02:42:28 %S A256033 1,5,43,529,8451,167397,3984807,111319257,3583777723,131082199809, %T A256033 5385265586075,246172834737485,12422776100542887,687441750763500441, %U A256033 41475644663003037947,2714680813135603845921 %N A256033 Number of idempotents of rank 1 in partition monoid P_n. %H A256033 I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., <a href="http://arxiv.org/abs/1408.2021">Enumeration of idempotents in diagram semigroups and algebras</a>, arXiv preprint arXiv:1408.2021 [math.GR], 2014. See Table 3. %p A256033 e256033 := proc(n,r,s) %p A256033 option remember; %p A256033 local resu,m,a,b; %p A256033 if n <= 0 then %p A256033 return 0; %p A256033 end if; %p A256033 if s = 1 then %p A256033 combinat[stirling2](n,r) ; %p A256033 elif r= 1 then %p A256033 combinat[stirling2](n,s) ; %p A256033 else %p A256033 resu := s*procname(n-1,r-1,s)+r*procname(n-1,r,s-1)+r*s*procname(n-1,r,s) ; %p A256033 for m from 1 to n-2 do %p A256033 for a from 1 to r-1 do %p A256033 for b from 1 to s-1 do %p A256033 resu := resu + binomial(n-2,m) *(a*(s-b)+b*(r-a)) %p A256033 *procname(m,a,b)*procname(n-m-1,r-a,s-b); %p A256033 end do: %p A256033 end do: %p A256033 end do: %p A256033 resu ; %p A256033 end if; %p A256033 end proc: %p A256033 A256033 := proc(n) %p A256033 a := 0 ; %p A256033 for r from 1 to n do %p A256033 for s from 1 to n do %p A256033 a := a+r*s*e256033(n,r,s) ; %p A256033 end do; %p A256033 end do; %p A256033 end proc: %p A256033 seq(A256033(n),n=1..16) ; # _R. J. Mathar_, Mar 23 2015 %t A256033 f[n_, r_, s_] := f[n, r, s] = Module[{resu, m, a, b}, Which[n <= 0, 0, s == 1, StirlingS2[n, r], r == 1, StirlingS2[n, s], True, resu = s*f[n - 1, r - 1, s] + r*f[n - 1, r, s - 1] + r*s*f[n - 1, r, s]; Do[resu += Binomial[n - 2, m]*(b*(r - a) + a*(s - b))*f[m, a, b]*f[-m + n - 1, r - a, s - b], {m, n}, {a, r - 1}, {b, s - 1}]; resu]]; %t A256033 a[n_] := Module[{b = 0}, Do[b += r*s*f[n, r, s], {r, n}, {s, n}]; b]; %t A256033 Array[a, 16] (* _Jean-François Alcover_, Nov 23 2017, after _R. J. Mathar_ *) %o A256033 (Sage) %o A256033 @cached_function %o A256033 def F(n, r, s): %o A256033 if n <= 0: return 0 %o A256033 if s == 1: return stirling_number2(n, r) %o A256033 if r == 1: return stirling_number2(n, s) %o A256033 ret = s*F(n-1,r-1,s)+r*F(n-1,r,s-1)+r*s*F(n-1,r,s) %o A256033 for m in (1..n-2): %o A256033 for a in (1..r-1): %o A256033 for b in (1..s-1): %o A256033 ret += binomial(n-2,m)*(a*(s-b)+b*(r-a))*F(m,a,b)*F(n-m-1,r-a,s-b) %o A256033 return ret %o A256033 @cached_function %o A256033 def A256033(n): %o A256033 a = 0 %o A256033 for r in (1..n): %o A256033 for s in (1..n): %o A256033 a += r*s*F(n, r, s) %o A256033 return a %o A256033 [A256033(n) for n in (1..9)] # _Peter Luschny_, Jan 17 2016 %Y A256033 Cf. A060639, A256034. %K A256033 nonn %O A256033 1,2 %A A256033 _N. J. A. Sloane_, Mar 14 2015